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Abstract: In this paper, we define and study another various generalizations of fuzzy continuous functions by using
the concept of regular generalized fuzzy closed sets. A comparative study regarding the mutual interrelations among
these functions along with those functions obtained in {3] is made.Finally, we have introduced and studied the notions

of rgf-connectedness, rgf-extremally disconnectedness and rgf-compactness.

1 Introduction

In [3], using the concept of generalized fuzzy closed
sets, Balasubramanian and Sundaram have intro-
duced certain types of near-fuzzy continuous func-
tions between fuzzy topological spaces, i.e., general-
ized fuzzy continuous, fuzzy ge-irresolute, strongly
gf-continuous and perfectly gf-continuous func-
tions etc. They also introduced the notions of gf-
connectedness, g f-extremally disconnectedness and
gf-compactness and studied properties of those no-
tions under above-mentioned functions.

In this paper, we study another generalizations of
fuzzy continuous functions and their applications.
Section 2 is devoted to regular generalized fuzzy
closed sets and study their properties. In Section
3 we introduce regular generalized fuzzy continu-
ous functicns and their properties by using regular
generalized fuzzy closure Cl.. In Section 4 we intro-
duce fuzzy rgc-irresolute functions and study their
properties, whereas in Section 5 we introduce and
study strongly rgf-continuous and perfectly rgf-
continuous functions and investigate inter-relations
among these functions and those functions defined
in [3]. In Section 6 and 7, using the concept of
regular generalized closed (open) set, we introduce
and study the notions of rgf-connectedness, rgf-
extremally disconnectedness and rg f-compactness,
respectively.

2 Regular generalized fuzzy
closed sets in fuzzy topology

Definition 2.1 (3). Let X be an fts. A fuzzy set
A in X is called generalized fuzzy closed (in short,
gf-closed) if CI(A) < U whenever A< U and U is

Juzzy open. A fuzzy set A is called generalized fuzzy
open (in short, gf-open) if its complement 1 — A is
gfc.

Definition 2.2. Let X be an fts. A fuzzy set A
in X is called regular generalized fuzzy closed (in
short, rgf-closed) if CA) < U whenever A < U
and U is fuzzy regular open. A fuzzy set A is called
regular generalized fuzzy open (in short, rgf-open)
if its complement 1 — A s rgf-closed.

Remark 2.3. Every fuzzy closed (resp.  fuzzy
open) set is gf-closed (resp. gf-open) and every
gf-closed (resp. gf-open) set is rgf-closed (resp.
rgf-open), but the converses are not true.

Example 2.4. Let X = {a,b,c}, 1 = {0x,1x,
A1} and o = {0x,1x, A2}, where Ay(a) = 0.5,
A(b) = 0.7,A1(c) = 0.6; Ag(a) = 0.4, Ag(b) =
0.7, Aa(c) = 0.3. Define fuzzy sets Az and Ag in X
as follows: Asz(a) = 0.4, A3(b) = 0.3, A3(c) = 0.4;
Aq(a) = 0.3, 43(b) = 0.3, A43(c) = 0.2. Then we
have

(1) In (X, 7). As is gf-closed set but not fuzzy
closed.

(2) In (X,12), Aq is rgf-closed set but not gf-
closed.

Theorem 2.5. If A and B are rgf-closed sets,
then AV B is a rgf-closed set.

However, the intersection of two rg f-closed sets is
not rgf-closed set as the following example shows.

Example 2.6. Let X = {a,b,c} and 7 = {0y,
1x.A41}. where Ai(a) = 0.4, A1(b) = 0.3, A41(c) =
0.5. Define fuzzy sets As and Az in X as follows:
Ag(a) = 03442(1)) = 0.9, AQ(C) = 03, A3(a) =
0.7, 42(b) = 0.2, As(c) = 0.8. Then 4y and As are
rgf-closed sets but Ay A Az is not rgf-closed set.
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Theorem 2.7. If A isrgf-closed set and A < B <
Cl(A). then B is rgf-closed set.

Theorem 2.8. A fuzzy set A s rgf-open if and
only if ' < Int(A) whenever F is fuzzy regular
closed and FF < A.

Theorem 2.9. If A and B are rgf-open sets with
ANCUB) = BACIA) = 0x, then AV B isrgf-

open.

Proof. Let F be a fuzzy regular closed set such
that # < Av B. Then F A CI(4) < A since
B A CI(A) = Ox, and hence by Theorem 2.5,
(F A CI(A)) < Int(A). Similarly, (F A CI(B)) <
Int(B). Now we have

F =FA(AVB) < (FACI(A)V(FACIB))
< Int(A) vV Int(B) < Int(A V B).

Hence F' < Int(AV B) and hence Theorem 2.5, AVB
is rg f-open. O

Theorem 2.10. If Int(A) < B < A and A is rgf-
open set, then B is rgf-open.

Definition 2.11. A function f : X — Y is called
fuzzy regular continuous (in short. fr-continuous)
if the inverse image of every fuzzy closed set in Y
15 fuzzy regular closed in X.

Clearly, every fr-continuous function is fuzzy
continuous.

Theorem 2.12. If A is a rgf-closed set in X and
if f: X =Y is fr-continuous and fuzzy closed.
then f{A) 1s gf-closed in Y.

However, under fuzzy closed and fr-continuous
functions, the image of rgf-open set need be not

g f-open.

Example 2.13. Let X = {a}. Y = {a,b,c}, 1y =
{Ox,]x,A} and T2 = {Oy,ly,B],BQ} where A,
By and By is fuzzy sets defined by A(a) = 0.5;
B](a) = OB1(b) = 0.5,B] (C) = O,’ Bg(a) = 0,
Ba(b) = 1,By(c) = 0. Define a function f :
(X.11) — (Y, m2) by f(a) = b. Clearly. f is fr-
continuous and fuzzy closed. Now we shall show
that image of rgf-open set is not gf-open. Con-
suder a fuzzy set Ay in X defined by A(a) = 0.8.
Then Ay is rgf-open in (X, 7)) but f(A;) is not
9f-open in (Y, 7).

Definition 2.14. A fuzzy set A in an fts X is

called rgf-qg-nbd of a fuzzy point . if there is a
rgf-open set U such that xoqU < A.

Theorem 2.15. Let X be an fts. Then A is rgf-
open if and only if for each fuzzy point z, with
zoqA. A isrgf-qg-nbd of x,.

3 Regular generalized fuzzy
continuous functions and
their properties

Definition 3.1 (3). A function f : X — Y is
called generalized fuzzy continuous (in short. gf-
continuous) if the inverse image of every fuzzy
closed set in'Y is gf-closed in X .

Definition 3.2. A function f : X — Y is called
reqular generalized fuzzy continuous (in short, rgf-
continuous) if the inverse image of every fuzzy
closed set in'Y is rgf-closed in X.

Every continuous function is

continuous

gf-

function

fuzzy

and
is rgf-continuous. However, the converses are
not true as Example 3.3 in [3] and the following
example show.

every g f-continuous

Example 3.3. Let X = {a,b,c}. 1 = {0x,1x,
A1} and 72 = {Ox,1x,Asz}. where A (a) =
O.4,A1 (b) - 0.7,‘41 (C) = 0.3; Az(a) = 0.7, AQ(b) =
0.7,A2(c) = 0.8. Let f : (X,71) — (X, 7) be the
identity. Then f is rgf-continuous but not gf-
continuous since f~'(1 — Ay) is not gf-closed in
(X,7) for fuzzy closed set 1 — Ay in (X, 7).

Balasubramanian and Sundaram [3] defined the
generalized fuzzy closure operator Cl* to obtain
some properties of g f-continuity. So, in similar way,
we define the regular generalized fuzzy closure op-
erator Cl, for any fuzzy set 4 in (X, 7) as follows:

Cl(A) = /\{B | A < B and B is rgf-closed}.

Theorem 3.4. Let A be a fuzzy set in X and z,
be a fuzzy point in X. Then x, € Cl.(A) is and
only if for each rgf-g-nbd U of x,. UqA.

The following are the properties of rgf-

continuous functions.

Theorem 3.5. Let f : (X,7) — (Y,0) be a func-
tion.

(i) The following statements are equivalent:

(a) f is rg f-continuous.

(b) The inverse image of each fuzzy open set in
Y isrgf-open in X.

(1) If f : (X.7) — (Y, 0) is rgf-continuous, then
F(CL(A)) < CUf(A)) for any fuzzy set A in X.

(#11) The following statement are equivalent:

(a) For each fuzzy point zo in X and each fuzzy
open q-nbd of f(xrs). there exists a rgf-open g-nbd
U of xo such that f(U) < V.

(b) For each fuzzy set A in X, f(CL(A)) <
Cl(f(A)).
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(c) For each fuzzy set B in Y, CL(f~'(B)) <
fmHeuBy).
(d) The function f : (X.7.) — (Y,0) is fuzzy

continuous

The converse of Theorem 3.4 (ii) need not be true
as seen from the following example.

Example 3.6. Let X = {a,b.c}. 1 = {0x,1x.
A} and = {0x.1x,A2} where Ay, Ay are
fuzzy sets in X defined by Aj(a) = 0.6, 4,(b) =
0.7. A (c) = 0.6; Ay(a) = 0.3, Aa(b) = 0.7, Az(c) =
0.3. Consider a function f : (X, 1) — (X, 72) de-
fined by f(a) = f(b) = f(c) = b. Then for any
fuzzy set A, f(CL(A)) < CUf(A)). but f 1s not
rgf-continuous. (Since 1 — Ay is a fuzzy closed in

(X.7y) but f~1(1—Ay) is notrgf-closed in (X, 71).)

Definition 3.7 (3). An fts X is said to be fuzzy
Ty sz of every gf-closed set in X s fuzzy closed in
X.

Definition 3.8. An fts X is said to be fuzzy
regular-11 /5 if every rgf-closed set in X is fuzzy
regular closed in X.

Every fuzzy regular-T) , space is fuzzy T4 /2 but
the converse need not be true as seen from the fol-
lowing example.

Example 3.9. Let X = {a,b} and 7 = {0x,1x,
A} where A is fuzzy set in X defined by 0 < A(a) <
1,0 < A(b) < 3. Then (X,7) is fuzzy Ty/2 but not
fuzzy reguler-Ty /o.

Theorem 3.10. Let f: X — Y andg:Y — Z be
functions.

(i) If f and g are rgf-continuous and Y is fuzzy
reqular-T} /. then the composition g o f: X —>2Z1s
also rg f-continuous.

(1) If f is rg f-continuous and g are fuzzy contin-
uous. then the composition g o f is rgf-continuous.

The following Example shows that the composi-
tion of any two rgf-continuous functions need not
be rgf-continuous.

Example 3.11. Let X = {a,b,c}. 1 = {0x,1x,
A]}, Ty = {Ox,lx,Ag} and T3 — {Ox,lx,A3}
where Ay, Ay and As are fuzzy sets in X defined
as follows:

A] (a) = 04, Al(b) == 03 A41 (C) =0.4;
Apla) = Ag(b) = Ag(c) = 0.5
443((1) = 07. Ag(b) = 08 A3 (C) =0.7.

Let f - (X.7) — (X.m2) be a function defined by
fla) = f(b) = f(c) = b and g : (X,72) — (X, 73)

be the identity. Then f and g are Tgf-continuous
but g o f is not rgf-continuous; for 1 — Az is fuzzy
closed in (X, 73). f~ (g7 (1—A3)) is not rgf-closed
in (X. 7). Hence go f is not rgf-continuous.

Remark 3.12. For f : X — Y, when X is fuzzy
reqular-T, /2. then rgf-continuity, g f -continuity,
fuzzy continuity and fr-continuity are equivalent.

4 Fuzzy rgc-irresolute func-
tions and their properties

Definition 4.1 (3). A function f : X — Y s
called fuzzy gc-irresolute if the inverse image of ev-
ery gf-closed set in'Y is gf-closed in X.

Definition 4.2. A function f : X — Y is called
fuzzy rgc-irresolute if the inverse image of every
rgf-closed set inY is rgf-closed in X.

Every fuzzy rgc-irresolute function is rgf-
continuous but the converse is not true (see Exam-
ple 4.3). And the following Examples 4.4 and 4.5
show that fuzzy ge-irresolute function and fuzzy gc-
irresolute function are, in general, independent.

Example 4.3. Let X = {a,b,c}, n = {0x,1x,
A1} and 7 = {0x,1x, A2}, where Ay and Ay are
fuzzy sets in X defined by Ai(a) = 0.7, A;(b) =
0.8,A1(c) = 0.7; Az(a) = Az(b) = Az(c) = 0.5.
Let f : (X,7) — (X,72) be the identity. Then f
is rq f -continuous but not fuzzy rgc-irresolute; for a
fuzzy set Az in X defined by Az(a) = 0.3, A3(b) =
0.1, A3(c) = 0.3 is rgf-closed in (X, 72). f~'(As3)
is not rgf-closed in (X, 1).

Example 4.4. Let X = {a,b,c}, 1 = {Ox,1x.,
A} and T = {0x,1x, A2} where A, and A
are fuzzy sets in X defined by Ai{a) = Ailc) =
O,Al(b) = 0.5; Az(a) = AQ(C) = O,Ag(b) = 1.
Let f: (X,7) — (X,72) be the identity. Then f
is fuzzy gc-irresolute but not fuzzy rgc-irresolute;
for Ay is rgf-closed in (X,72). f~'(A1) is not
rgf-closed in (X, 7).

irresolute.

Hence [ is not fuzzy rgc-

Example 4.5. Let X = {a,bc}. 1 = {0x,1x.

A1} and 1 = {0x,1x, A2} where A, and Ay are
fuzzy sets defined by Ay(a) = Ai1(c) = 0,4;:(b) =
1; Ag(a) = AQC) = 0.7,Az(b) = 05. Let f :

(X, 7)) — (X,72) be the identity. Then f is fuzzy
rgc-irresolute but not fuzzy ge-irresolute; for a fuzzy
set As in X defined by Az(a) = As(c) =0, Az(b) =
0.5 is gf -closed in (X, 72). f~'(As) is not gf -closed
in ()(. B! )
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The following are the properties of fuzzy rgc-
irresolute functions.

Theorem 4.6. Let f : (X.7) — (Y,0) be a func-
tion.

(1) The following statements are equivalent:

(a) f is fuzzy rgc-irresolute.

(b) The inverse image of every rg f-open set in'Y
ts Tgf-open in X.

(ii) If f : (X, 7) — (Y,0) 1s fuzzy rgc-irresolute,
then f(CL(A)) < CL(f(A)) for any fuzzy set A in
X.

(#it) The following statements are equivalent:

(a) For each fuzzy point xo in X and each rgf-
open ¢-nbd of f(zy), there exists a rgf-open q-nbd
U of z, such that f(U) < V.

(b) For each fuzzy set A in X, f(CL(A)) <
CL(f(A)).

(c) For each fuzzy set B in' Y. CL(f~1(B)) <
f~HCL(B)).

(d) The function f : (X, 7.) — (Y,04.) is fuzzy

continuous.

Theorem 4.7. Let f : X — Y andg:Y — Z be
functions.

(i) If f and g are fuzzy rgc-irresolute, then the
composition g o f is fuzzy rgc-irresolute.

(it) If f is fuzzy rgc-irresolute and g are rgf-
continuous, then the composition g o f is rgf-
continuous.

5 Strongly rgf-continuous
and perfectly rgf-contnuous
functions

Definition 5.1 (3). A function f : X — Y is
called perfectly fuzzy continuous if the inverse im-
age of every fuzzy open set in'Y is both fuzzy open
and fuzzy closed in X.

Definition 5.2 (3). A function f : X — Y is
called strongly gf-continuous if the inverse image
of every gf-open set in'Y s fuzzy open in X.

Definition 5.3 (3). A function f : X — Y is
called perfectly gf-continuous if the inverse image
of every gf-open set in Y s both fuzzy open and
fuzzy closed in X .

Definition 5.4. A function f : X — Y is called
strongly rgf-continuous if the inverse image of ev-
ery rgf-open set in'Y is fuzzy open in X.

Definition 5.5. A function f : X — Y is called
perfectly rg f -continuous if the inverse image of ev-
ery rgf-open set in'Y is both fuzzy open and fuzzy
closed in X .

Remark 5.6. When Y is fuzzy regular-Ty,.
strongly rg f-continuity, strongly gf-continuity and
fuzzy continuity are equivalent concepts. and also
perfectly rq f-continuity, perfectly g f-continuity and
perfectly fuzzy continuity are equivalent.

Theorem 5.7. Strong rgf-continuity = strong
gf-continuity = fuzzy continuity.

The converses of Theorem 5.7 are not true as Ex-
ample 5.7 in [3] and the following example show.

Example 5.8. Let X = {a,b} and 11 = {0x,1x.
A1} where Ay is fuzzy set in X defined by Ai(a) =
1,05 < A(b) < 1. Let f: (X, 7) — (X, 7) be the
identity. Then f is strongly gf-continuous but not
strongly rgf-continuous.

Theorem 5.9. A function f : X — Y 1is strongly
rgf-continuous if and only if the inverse image of
every rgf-closed set in Y is fuzzy closed in X.

Theorem 5.10. Let f : X — Y, g:Y — Z be
functions. If f is strongly rgf-continuous and g 1is
rgf-continuous, then g o f is fuzzy continuous.

Theorem 5.11. Perfect rgf-continuity = perfect
gf-continuity, and perfect rgf-continuity = strong
rg f-continuity.

The converses of Theorem 5.11 are not true.

Example 5.12. Let X = {a,b}, m = {0x,1x,
A1, A2} and 15 = {0x,1x, A1} where A; and A,
are fuzzy sets in X defined by Ay(a) = 1, 0.5 <
Ar(b) < 1; Az(a) = 0, 0 < Ax(b) < 0.5. Let
f - (X,n) — (X,m) be the identity. Then f
is perfectly gf-continuous but not perfectly rgf-
continuous.

Example 5.13. Let X = {a,b}, m = {0x,1x,
A} and 75 = {0x,1x, Az} where A; and Ay are
Juzzy sets in X defined by 0 < A;(a) < 1, 0 <
Aj(b) < 3,0 < Ay(a) < 5. 0< Ay(b) < 1. Define
F i (Xom) = (X,73) by fla) = b end f(b) = a.
Then f is strongly rg f-continuous but not perfectly
rgf-continuous.

Theorem 5.14. A function f :— Y s perfectly
rgf-continuous if and only if the inverse image of

rgf-closed set in Y is both fuzzy open and fuzzy
closed in X .
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Regarding the results above-mentioned so far, we
have the table of implications as shown in follwing
table.

= a b ¢ d e T g h 1 1 k
a 1 1 T T 0 0 0 0 0 0 0
b o 1t 1 1 0 0 0 0 0 0 0
C 6 0 1 1 0 0 O 0 0 0 O
d 0 0 0 1 0 0 0 0 0 0 0
e o 0 1t 1 1 0 0 0 0 0 O
f o 0 01 0 1 0 0 0 0 0
g 11 1t 1 0 O 1 0 0 0 O
h o0 1 1t 1 1 0 0 1 0 0 0
i 1 11 1 1 0 1 1 1 0 0
j o 1 1 1 1 1 0 1 0 1 0
k i1 1 1 1 1 1 1 1 1

In above table, a, b, ¢, d, e, f, g, h, ¢, j and k
denote fuzzy regular continuity, fuzzy continuity,
g f-continuity, rgf-continuity, fuzzy gc-irresolute,
fuzzy rgc-irresolute, perfect fuzzy continuity, strong
g f-continuity, perfect gf-continuity, strong rgf-
continuity and perfect rg f-continuity, respectively.
Also 1 denotes ‘implies’ and 0 denotes ‘does not
imply’.

6 rgf-connectedness and their
properties
Definition 6.1 (3). An fts X is said to be gf-

connected if the only fuzzy sets which are both gf-
open and gf-closed are Ox and 1x.

Definition 6.2. An fts X
connected if the only fuzzy sets which are both rgf-

is said to be rgf-

open and rgf-closed are Ox and 1x.

Theorem 6.3. FEvery rgf-connected space is gf-
connected and every gf-connected space is fuzzy
connected [6].

However, the converses are not true as Example
7.3 in [3] and the following example show.

Example 6.4. Let X = {a,b} and 7 = {0x,1x,
A} where A is a fuzzy set in X defined by § < A <
1. A(b) = 1. Then (X,7) is gf-connected but not
rgf-connected; For any fuzzy set B in X, B isrgf-
open and rgf-closed in (X, 7). Hence (X, 7) is not
rgf-connected.

Theorem 6.5. For fuzzy reqular-Ty ;5 space X. the
following are equivalent:

(i) X is rgf-connected.

(ii) X 1is gf-connected.

(wi) X is fuzzy connected.

Theorem 6.6. If f : X — Y is rgf-continuous
surjection and X is rgf-connected. then Y is fuzzy
connected.

Theorem 6.7. If f X — Y is fuzzy rgc-
irresolute surjection and X is rgf-connected, then
Y is rgf-connected.

Theorem 6.8. If f : X — Y is more strongly
gf-continuous surjection and X 1s fuzzy connected,
then Y is rgf-connected.

Theorem 6.9. An fts X is rgf-connected if and
only if it has no non-zero rgf-open sets A and B
such that A+ B = 1.

Corollary 6.10. An fts X is rgf-connected if and
only if it has no non-zero rgf-open sets A and B
such that A+ B=1, Cl{A)+ B= A+ CiB) = 1.

Now, we define the regular generalized fuzzy in-
terior operator Int, for any fuzzy set A in a fts
(X,7) as follows: Int.(A) = V{B | B < A
and B is rgf-open}. Tt is easy to see that for any
fuzzy set Ain X, 1 — CL,{(A) = Int,(1 — A).

Definition 6.11. A rgf-open set A is called regu-
lar rgf-open if A = Int,(Cl.(A)). The fuzzy com-
plement of regular rgf-open set is called regular
rg f-closed.

Definition 6.12. An fts X is called rg f -super con-
nected if there is no proper regular rgf-open set in
X.

Theorem 6.13. In an fts X, the following are
equivalent:

(i) X is rgf-super connected.

(i) For every non-zero rgf-open set A, CL.{(A) =
1.

(iii) For every rgf-closed set A with A # 1,
Int,(A) = 0. ‘

(iv) X does not have non-zero rgf-open sets A
and B such that A+ B < 1.

(v) X does not have non-zero fuzzy setsA and B
such that Cl,(A)+ B = A+ CL(B) = 1.

Definition 6.14. An fts X is said to be rgf-
strongly connected if it has no non-zero rgf-closed
sets A and B such that A+ B < 1.

Theorem 6.15. An fts X s rgf-strongly con-
nected if and only if it has no non-zero rgf-open
sets A and B such that A # 1. B # 1 and
A+B>1.

Remark 6.16. Every rgf-super connected space is
gf-super connected, and every rg f-strong connected
space g f-strong connected.

—-217-



The converses of Remark 6.16 are not true. Also
the following examples show that g f-super connect-
edness and g¢f-strong connectedness are indepen-
dent.

Example 6.17. Let X = {a,b} and 7 = {0x,1x,
A} where A 1s fuzzy set defined by % < A(a) €1 and
A(b) =0. Then (X,7) is gf-super connected but it
1s neither g f-strongly connected nor rg f-super con-
nected.

Example 6.18. Let X = {a,b} and 7 = {Ox, 1x.
Ay, Ao} where Ay and Ay are fuzzy sets defined by
Ai(a) = 2. A1(b) = 1; 0 < Ay(a) < 3. Az(b) = 0.
Then (X,7) is gf-strongly connected but it is nei-
ther g f-super connected nor rgf-strongly connected.

7 rgf-extremally disconnect-
edness and rgf-compactness

Definition 7.1. An fis X is said to be reqular
generalized fuzzy extremally disconnected (in short,
rqf-extremally disconnected) if Cl,(A) is rgf-open.
whenever A is rgf-open.

Theorem 7.2. For any fts X, then following are
equivalent:

(i) X is rgf-extremally disconnected.

(i) For each rgf-closed set A. Int.(A) is rgf-
closed.

(i5i) For each rgf-open set A, Cl,(A) + CL(1 —
ClL(A) =1.

(iv) For each pair of rgf-open set A. B with
Cl{dy+ B =1, ClLL(A) + CL.(B) =1.

Definition 7.3. A collection {Ax}rcn of rgf-open
sets in X is called rgf-open cover of a fuzzy set B
in X if B <V ,eca Ax.

Definition 7.4. An fts X is called rgf-compact if
every rg f-open cover of X has a finite subcover.

Definition 7.5. A fuzzy set B in X is said to be
rgf-compact relative to X (which we shall call a
rgf-compact set) if for every collection {Ax}aea
of rgf-open sets of X such that B < \/ ., Ax,
there exists a finite subset Ay of A such that B <
V)\Ez\o 4‘1,\ .

Theorem 7.6. Let X be a rgf-compact fts and A
be a rgf-closed set in X. Then A is rgf-compact
set.

Theorem 7.7. (i) If f: X — Y is rgf-continuous
and X 1is rgf-compact, then f(X) is a fuzzy com-
pact set.

(i) If f + X — Y is fuzzy rgc-irresolute and A
is rgf-compact set of X. then f(A) is rgf-compact
set of Y.

(i) If f : X — Y 1s strongly rgf-continuous and
X is fuzzy compact. then f(X) is argf-compact set
of Y.
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