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Abstract

It is wisely stated that the most valuable knowledge that a person can acquire is the knowledge of how to
learn. The human’s learning is characterized by the ability to extract relationships between the different
characters of a given situation. The ellipse is a first approach of comparison. We assimilate each character to a
half axis of the ellipse and the result is a geometrical figure that varies according to values of the two
characters. Thus. we take into account the two characters as an alone entity.
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1. Introduction

A concept central to the practice of pattern
recognition is that of discriminants [1,2]. The idea a
pattern-recognition system learns adaptively from
experience and distills various discriminants, each
appropriate for its purpose. In pattern recognition’s
quintessential form, both the learning and recognition
phases would be achieved with concurrent distributed
processing and the entire procedure would be
powerful and rapid. This seems to be the case in
biological neural systems and should also be the case
for computer based adaptive pattern-recognition
systems.

One of the most exciting developments during of
the ecarly days of pattern recognition was the
Perceptron. [t can be represented schematically in the
form of an array of multipliers and summing junctions
as shown in the next figure. Each input is connected
to the output by a link containing a multiplier, such
that the input to the output node is the sum of all the
appropriately weighted inputs. The task is to learn a
set of weights so that all patterns can be classified
correctly using a single set of weights.

output

Sw=b +1 if x in cluster]

-1 if x not in cluster

weight vector w

However, this system presents some limitations.
Indeed, the Perceptron can learn only problems of
classifications with a linear separation. It can not
therefore solve the problem of XOR in two dimension.
Nevertheless, if we considers an extension in three
dimension of this problem we can have a linear
separation using the back-propagation or the
functional link net as shown in the next figures.
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Or, the separation is not immediate {1,2]. So, we
can suppose that if the Perceptron arrives badly to
solve the problem of XOR. it is because we have not
described it or given it relationships that exist between
elements and tools to put them in obviousness and to
valorize them. Indeed. we wonder why the human
arrives to extract relationships who exist within an
example of data without needing to make an extension
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of dimensions? We can suppose that he possesses a
powerful and instantaneous system of extraction of
information and relationships that allows him to
realize a scparation of subset better than the most
powerful of machine.

It would be interesting to try to imitate the human
scparation manner taking into account the totality of
characters unite and targeting the parameters of
discrimination. Indeed. if we want to compare two
persons, the man is not going to compare the length of
arms, the length of legs. the width of the torso. ..., but
first he is going to target a criterion of comparison,
for example the size. Then, he is going to tell that a
person A is higher than a person B and that B is
slimmer than A without detailing the comparison. I.c.
he is not going to sav that the person A possesses an
arm more long than B, or that the face of B is slimmer
than A. but he is going to make the comparison by
taking into account all characters unite.

The goal of this paper is first to make architectures
of systems that permit to cxtract rclationships between
elements and to make decision based on these
relationships immediately. Then. to put in
obviousness the power of the generalization of these
sysiems

2, The elliptic approach

It is wisely stated that the most valuable knowledge
that a person can acquire is the knowledge of how 1o
lcarn. The human’s learning is characterized by the
ability to extract relationships between the different
characters of a given situation. In other words.
humans learn relationships as entities rather than
values of characters. What gives a certain power to
recognize a situation already seen.

In fact, the pattern recognition in computer takes
generally in consideration only one character at each
comparison. Nevertheless, the human vision, takes in
consideration the totality of characters at the same
time. Consequently. the decision is taken globally
without dividing the comparison. For example, if we
want to compare the form of two objects. the human
vision takes into account the parameter's
width/length/height at the same time as a relation.
However, the machine needs to compare widths then
lengths and finally height. In each comparison the
machine considers only one character.

The ellipse is a first approach of comparison
because it provides us a general and a simple relation
that can link two parameters that are the half axis of
the ellipse. Indeed. we assimilate each character to a
half axis of the ellipse and the result is a geometrical
figure that varies according to values of the two
characters. Thus. we take into account the two
characters as an alonc entity.

Instcad of scparating the two characters. we use an
clhipse and we assimilate each character to a half axis

of the ellipse. In the case of intervals, the center of the
ellipse is the point formed by the two inferior interval
extremities. and in the case of values, the center is
arbitrary and is common to all ellipses .

The eccentricity of the ellipse is a general relation
of comparison. Its value belongs to [0.1] and
measures the similarity of the form of the considered
attributes. So, the notion of memberships degree and
fuzzy sets is implicit. Instead of using the Euclidean
distance. we use the eccentricity because it measures a
fuzzy relationship between the elements. We have no
need to use other functions to calculate the fuzzy
membership.

3. Architecture for the XOR resolution
3.1. In wo-dimensional space

The even-parity patterns have an associated output
value of 1 and the odd-parity have an output of 0.
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Figure 3.1. Patterns of even and odd parity

We can see that a regular metric would not allow
us to solve the problem of XOR. However, if we
represent each point by an ellipse we will see that
close elements to (0, 0) and (1,1) would be ellipses
whose eccentricity is neighbor 0. And close elements
to (0.1) and (1.0) will have ellipses whose eccentricity
is neighbor 1. Thus. we have succeeded to separate
two clusters only by using properties of ellipses. The
generalization is immediate as shown in the figures
(3.1and (3.2).
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Figure 3.2. The net for the two dimensional XOR
problem and The results obtained

Remark

The eccentricity make the output of the even parity
0. So. if we want to have 1 as an associated output we
use (l-eccenticity).

To make the eccentricity defined while elements
are close to (0. 0). we make a translation of all the set.

So. the relation between the two abscissas has been
detected only by the eccentricity. In fact, we construct
a net of relations. So. the conjunction of each two
knots gives an information. Indeed. the link between
the two inputs to produce the target output is the
eccentricity.

3.2. In three-dimensional space

The XOR problem in the three dimensional space
is as illustrated in the figure (3.5). So, the elements (0
10), (100), (001 (111)would have the same
output 1 and the elements (000), (10 1). (01 1). (11
0) would have the same output 0, (or inversely) . So,
let x1,x2,x3 a vector represented the elements of this
set.

eccentricity(x1.x2)=0 if x1=x2,

eccentricity(x1,x2)=1 if x1#x2

then eccentricity(eccentricity(x1,x2),x3) is an XOR
problem berween eccentricity(x1.x2) and x3. So, we
find the case of two-dimensional XOR problem’s as it
illusirated in the next figure (3.6). In fact, we
construct a net of relations. So, the conjunction of
each two knots gives an information.

mput vector output

x1

Ol =eccentricity(x1,x2)

O2=eccentricity(O1,x3
x2

Figure 3.3. The net for the three dimensional XOR
problem

3.3. In (n+1)-dimensional space

The XOR problem in (n+1)-dimensional space is
the generalization of the case of three-dimensional
problem. So, let x1.x2,x3,....xn a vector represented
the elements of this set. then

eccentricity(x1,x2)=0 if x1=x2,

eccentricity(x1,x2)=1 if x1#x2

then

eccentricity(eccentricity(x1,x2),x3) is an XOR
problem between eccentricity(x1,x2) and x3. So,

eccentricity(eccentricity(eccentricity(x1,x2),x3),x4)
is an XOR problem between
eccentricity(eccentricity(x1,x2),x3) and x4. ...etc. as
it illustrated in the next figure (3.7).

So, we find at the end the case of two-dimensional .
XOR problem’s.
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Figure 3.4. The net for the (n+1) dimensional XOR
problem

4. Learning a separation of the Iris data of
Anderson

We have already, put in obviousness during the
using of fuzzy curves | 3] that there is a relation that
links elements of this set (figure 4.1).

The Iris data of Anderson[3] has often been used as
a standard set for testing the performances of
algorithms and discrimination’s criteria. In this case,
30 plants in each of two varieties of Iris represented
in the data: Virginia iris and  Versicolor iris.
Therefore, we are concerned by the comparison of the
form of theses plants. So, it logic to compute the
perimeter or the surface of the ellipses to determine
the most similar elements.

By examining the graph, that represents the
evolution of characters of the two varieties, we notice
that there is a certain relationship that links
parameters. No regular metric can separate correctly
these two varicties. Therefore, we have represented
varieties by ellipses whose the half center are
characters (i, j) where i=j.

So, we construct a net that takes into account the
difference of the size. In this net, we compute the
perimeter or the surface of the six combination of the
characters ((1 2), (1 3). (1 4), (23),(24), (3 4)) for
two compared vectors, as shown in the figure (4.4).
Then we choose a relation and we compute the
eccentricity between the two vector relatively to this
relation. The results of all relations for the Iris data of
Anderson are shown in the figure(4.3) ( We have
compared all the elements with an alone vector: the
first one).
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Figure 4.3. The results of net for the iris data of
Anderson

We can use another layer in order to determinate
the most discriminate relation.

Conclusion

The separation obtained by the eccentricity of
ellipses show that even if there are little close
elements or more similar elements, the system arrives
to classify them by dispersed eccentricity. Therefore,
we tend to the human vision because the human itself
is incapable to decide in front of two appeared similar
clements.

So, we give to the machine necessary tools in order
to decide immediately. without making iterations.

we see that the ellipse gives us magical resolutions
to different processed problems [5]. Is it a chance or a
coincidence or simply an ellipse’s secret that escapes
us, because we see the ellipse everywhere around us;
even the planets have choose it as path?
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Figure 4.1. The net for the resolution for the iris data
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