On fuzzy c^* -continuous mappings

J. H. Ryou, K. Hur, and J. R. Moon

Dept. of Mathematical Science, Wonkwang University Iksan, Chunbuk 570-749, South Korea. kulhur@wonnms.wonkwang.ac.kr

Abstract: We introduce the concept of a fuzzy c^* -continuity. And we obtain some properties.

1. Preliminaries.

Let I = [0,1]. For a set X, let I^X be the collection of all mappings of X into I. Each member of I^X is called a *fuzzy set* in X (cf, [9]) For each $A \in I^X$, let $S(A) = \{ x \in X : A(x) > 0 \}$ (called the *support* of A).

Definition 1.1[2]. A subfamily \Im of I^X is called a *fuzzy topology* on X if \Im satisfies the following conditions:

- (i) \emptyset , $X \in \Im$.
- (ii) If $\{U_{\alpha}: \alpha \in \Lambda\} \subset \Im$, then $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \Im$, where Λ is an index set.
- (iii) If $A, B \in \mathcal{I}$, then $A \cap B \in \mathcal{I}$.

Members of \Im are called *fuzzy open sets* in X and their complements *fuzzy closed sets* in X. The pair (X, \Im) is called a *fuzzy topological space(fts,* in short).

Notations. For a fts X, let:

- (a) FO(X) denote the collection of all the fuzzy open sets in X.
- (b) FC(X) denote the collection of all the fuzzy closed sets in X.

Definition 1.2[6]. Let (X, \mathcal{I}) be a fts and let A be subset of X. Then the family $\mathcal{I}_A = \{U \mid_A : U \in \mathcal{I}\}$ is called the *relative fuzzy topology* of \mathcal{I} to A. Such a fuzzy topological space (A, \mathcal{I}_A) is called a *subspaces* of (X, \mathcal{I}) . A \mathcal{I}_A -open(resp. \mathcal{I}_A -closed) fuzzy set is also called a *relative open* (resp. *closed*) fuzzy set in A.

It is clear that \Im_A is a fuzzy topology on A.

Definition 1.3[4]. Let \mathcal{B} be a collection of fuzzy sets in a fts X. Then \mathcal{B} is called a *filter*

base if for any finite subset $\{U_i: i=1,\cdots,n\}$ of \mathcal{B} , $\bigcap_{i=1}^n U_i \neq \emptyset$.

Definition 1.4[4]. A subset A of a fts (X, \mathcal{I}) is said to be *compact* if for each filter base \mathcal{B} such that every finite intersection of members of \mathcal{B} is q-coincident with A, $(\bigcap_{B\in \mathcal{B}} clB) \cap A \neq \emptyset$.

Theorem 1.A[4]. Every closed subset of a compact space is compact.

Definition 1.5[3]. (X, \mathcal{I}) said to be T_2 iff for two distinct points x_λ and y_μ in X:

(i) $x \neq y$ implies that x_λ and y_μ have open nbds which are not q-coincident; (ii) x = y and $\lambda \in \mu(\text{say})$ imply that x_λ has an open nbd and y_μ has an open q-nbd which are not q-coincident.

Theorem 1.B[4]. A compact subset of a T_2 -space is closed.

Theorem 1.C[4]. Every f-continuous image of a compact space is compact.

Definition 1.6[5]. Let X and Y be fts's, let $f: X \to Y$ be a mapping and let $x_{\lambda} \in F_{p}(X)$. Then f is said to be fuzzy c-continuous(or simple, f-c-continuous) at x_{λ} if for each open nbd V of $f(x_{\lambda})$ and V^{c} is fuzzy compact in Y, there exists an open nbd U of x_{λ} such that $f(U) \subset V$. The mapping f is said to be fuzzy c-continuous(or simple, f-c-continuous)(on X) if f is f-c-continuous at each $x_{\lambda} \in F_{p}(X)$.

It is clear that each f-continuous mapping is f-c-continuous.

Definition 1.7[8] A fts is *countably compact* iff every countable open cover of the space has a finite subcover.

It is clear that each fuzzy compact space is countably compact.

2. Basic properties of fuzzy c^* -continuous mapping.

Definition 2.1. Let X and Y be fts's, let $f: X \to Y$ be a mapping and let $x_{\lambda} \in F_{\rho}(X)$. Then f is said to be fuzzy c^* -continuous(or simple f- c^* -continuous) at x_{λ} if for each open nbd V of $f(x_{\lambda})$ and V^c is fuzzy countably compact in Y, there exists an open nbd U of x_{λ} such that $f(U) \subset V$. And the mapping f is said to be fuzzy c^* -continuous(or

simple, $f - c^*$ -continuous)(on X) if f is f-c-continuous at each $x_{\lambda} \in F_p(X)$.

It is clear that every f-continuous mapping is $f-c^*$ -continuous and every $f-c^*$ -continuous mapping is f-c-continuous. But the inverse is not necessarily true.

Theorem 2.2. Let X and Y is fts's, and let $f: X \rightarrow Y$ be a mapping. Then the following statement are equivalent:

- (a) f is f-c*-continuous.
- (b) If V is fuzzy open set in Y with V^c is a fuzzy countably compact in Y, then $f^{-1}(V) \in FO(X)$.
 - (c) If C is a fuzzy countably compact and closed subset of Y, then $f^{-1}(C) \in FC(X)$.

Theorem 2.3. If $f: X \to Y$ is f^-c^* -continuous and A is a subset of X, then $f \mid_A : A \to Y$ is f^-c^* -continuous.

Theorem 2.4. If $f: X \to Y$ is f-continuous and $g: Y \to Z$ is f- c^* -continuous. Then $g \circ f: X \to Z$ is f- c^* -continuous.

Theorem 2.5. Let X and Y be fts's and let $X = A \cup B$, where $A, B \in FO(X)$ (resp, $A, B \in FC(X)$) such that A = S(A) and B = S(B). Suppose $f: X \rightarrow Y$ is mapping such that $f \mid_A$ and $f \mid_B$ are $f \mid_A$ are $f \mid_B$ are f

Corollary 2.5.1. If X and Y are fts's, and either (1) $X = \bigcup_{\alpha \in \Gamma} A_{\alpha}$, where each A_{α} is a fuzzy open subset of X with $S(A_{\alpha}) = A_{\alpha}$ for each α or (2) $X = \bigcup_{i=1}^{n} B_{i}$, where each B_{i} is a fuzzy closed subset of X with $S(B_{i}) = B_{i}$ for each i and f: X - Y is a mapping such that either each $f \mid_{A_{\alpha}}$ or $f \mid_{B_{i}}$ is $f - c^{*}$ -continuous, then f is $f - c^{*}$ -continuous.

3. Further results

Definition 3.1[7]. A fts (X, \mathcal{I}) is said to be C_I if every fuzzy point in X has a countable local base.

Theorem 3.2. Let $f: X \to Y$ be a f-c-continuous and Y a fuzzy T_2 -compact space. Then f is f-continuous.

Corollary 3.2.1. Let $f: X \to Y$ be a f- c^* -continuous and Y be fuzzy T_2 -compact space. Then f is f-continuous.

Theorem 3.3. Let $f: X \to Y$ be bijection, f-continuous mapping, and $Y \subset C_1$. Then $f^{-1}: Y \to X$ is $f^{-1}: C^*$ -continuous.

Corollary 3.3.1. Let $f: X \to Y$ be bijection, f-continuous function, and $Y \to C_1$. Then $f^{-1}: Y \to X$ is f-c-continuous.

Corollary 3.3.2. Let $f: X \to Y$ be bijection and f-continuous. If Y is C_1 and X T_2 , then f is homeomorphism.

REFERENCES

- [1] Y. S. Ahn, Various weaker forms of fuzzy continuous mappings, Ph. D. Thesis, (1995).
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] S. Ganguly and S.Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy Sets and Systems 16(1985) 265-275.
- [4] S. Ganguly and S.Saha, A note on compactness in a fuzzy setting, Fuzzy Sets and Systems 34(1990) 117-124.
- [5] K.Hur, J.R.Moon and J.H.Ryou, A note On Fuzzy c-continuous Mappings, Proceeding of KFIS, Vol 7(1997) 214-217.
- [6] Pu Pao Ming and Liu Ying Ming, Fuzzy topology I, Neighborhood structures of a fuzzy point and Moore-Smith convergences, J. Math. Anal. Appl. 76 (1980) 571-599.
- [7] Y.S.Park, c^* -continuous functions, J.Korean Math. Soc. 8 (1971) 69-72/
- [8] C.K.Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 41(1974) 316–328.
- [9]L.A.Zadeh, Fuzzy sets, Inform and Control. 8(1965) 338-353.