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ABSTRACT

This paper provides accurate flexural vibration solutions for thick (Mindlin) sectorial plates. A Ritz method is
employed which incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction
with an admissible set of Mindlin “corner functions”. These comer functions model the singular vibratory
moments and shear forces, which simultaneously exist at the vertex of comer angle exceeding 180°. The first set
guarantees convergence to the exact frequencies as sufficient terms are taken. The second set represents the comer
singulanties, and accelerates convergence substantiaily. Numerical results are obtained for completely free
sectorial plates. Accurate frequencies are presented for a wide spectrum of vertex angles (90°, 180°, 270°, 300°,
330°, 350°, 355°, and 359°) and thickness ratios.

1. INTRODUCTION

The problem of free vibration of complete circular and annular, thin and thick plates has attracted the attention of
many researchers. However, the scope of previous work done for the sectorial plates (see Fig. 1) is narrow. Several
researchers have offered theoretical and experimental vibration data for classically thin sectorial plates with various
edge conditions on the circular and radial edges, namely on the work of Ben-Amoz", Bhattacharya and Bhowmic?,
Maruyama and Ichinomiya®™, Leissa et al.®.

First order shear deformation theories by Reissner'® and Mindlin‘®, which include the effect of shear deformation
and rotary inertia, have also been used in the vibration analysis of moderately thick annular sectorial plates. Bapu Rao
et al"" developed various sector plate finite elements based on Reissner plate theory for approximate vibration
analysis of thick circular and annular sectorial plates. Mizusawa® also proposed a Mindlin plate finite strip method
for the vibration of thick annular plates having simply supported radial edges and arbitrary circular edge conditions.
Srinivasan and Thiruvenkatachari® presented natural frequencies of annular sector Mindlin plates with all clamped
edges by using the boundary element method. Recently, Huang et al.'” provided exact analytical solutions for the
free vibrations of Mindlin sectorial plates with simply supported radial edges that formed reentrant corers having
unbounded bending stresses, and arbitrary circumferential edge conditions.

This paper provides a new comprehensive data base of accurate frequency solutions and mode shapes for
completely free Mindlin sectorial plates. A Ritz procedure is employed which incorporates a complete set of
admissible algebraic-trigonometric polynomials in conjunction with an admissible set of Mindlin corner functions.
These comer functions model the singular vibratory moments and shear forces which simultaneously exist at the
vertices of comer angles (a) exceeding 180° The first set guarantees convergence to exact frequencies when
sufficient terms are retained. The second set substantially accelerates frequency convergence, which is demonstrated
using numerical studies. Accurate frequencies are presented for a wide spectrum of vertex angles (a) (90°, 180°, 270°,
300°, 330°, 350°, 355°, and 359%) and thickness ratios (a/h).

2. METHODOLOGY
Consider in Fig. 1 a completely free, thick isotropic sectorial plate having radius a and thickness & with polar

coordinates (r,0) at the middle surface. The vibratory rotations and a transverse displacement are assumed in terms of
polar coordinates (,0) at the middle surface as
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$,(r,0,0) =0, (r,0)sinot, ¢q(r,0,0)=Qy(r,0)sinwt, w,(r,8,1)=W,(r,8)sinot, e

where ¢ is time and o is the circular frequency of vibration.
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Fig.1 Geometry of thick sectorial plate
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The maximum strain energy due to bending during a vibratory cycle is
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where )= ER*/12(1-v) is flexural rigidity, G = £/2(1+v) is shear modulus, £ is Young’s modulus, v is Poisson’s

)

ratio, and «? is shear correction factor. The maximum kinetic energy is
2 3
Trax = -‘5"2—— 1] [hwj + % I+ og)}rdrde, 3)

in which p 1s the mass per unit area of the plate.
In the present Ritz approach, displacement trial functions are assumed as the sum of two fimte sets:

®r=of+¢):1 ®9=®g+¢)6‘ WZ=WZP+WZC’ (4)

where ©7, ®f, WF are algebraic-trigonometric polynomials and @7, @3, wt are Mindlin comer functions. The
admissible polynomials are written as

M, i M, m 1 .
P = Y YApr™lcosnb+ T T Ap,r” cosnb, (5a)
m=2,4n=0,2,4 m=1,3,5n=135
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M, m M, m
0= Y TB,."lsinnb+ ¥ T A.r"sinm, (5b)

m=2,4n=2,4 m=135n=135
» M, m m M m m
Wf= 3% 2CuprTcosnd+ Y ¥C,.r"cosm, (5¢)
m=0,2,4n=0,2,4 m=13,5n=13,5

for the symmetric vibration modes, and

M, m | M, m

©f= Y 3D, 'sinnd+ ¥ FD,r" sinne, (6a)
m=2,4n=2.4 m=1,35n=135
M, m \ M, m 1

=3 E " cosnf+ ¥ TE,,.r" ' cosnd, (6b)
m=2,4n=02,4 m=13,5n=13,5
M5 m Ms m

WP= 3 3Cmsinm+ 3 3C,.r"sinm, (60)
m=2,4n=24 m=13,5n=135

for the antisymmetric modes. In Eqs. (5) and(6), 4,,-F,,, are arbitrary coefficients, and the values of m and n have
been specially chosen to eliminate those terms which yield undesirable singularities at » = 0 and yet preserve the
mathematical completeness of the resulting series, as sufficient terms are retained. Thus, convergence to the exact
frequencies is guaranteed when the series is employed in the present Ritz procedure.

The displacement polynomial Eqs. (5) and (6) should, in principle, yield accurate frequencies. However, the
number of terms may be computationally prohibitive. This problem is alleviated by augmentation of the displacement
polynomial trial set with admissible “corner functions”, which introduce the proper singular vibratory shear forces
and moments at the vertex of the V-notch (Fig. 1). The set of corner functions is taken as, for the symmetric modes:

K,
D = TGy [Ck cos(hy + 10—, cos(Xk—l)Gl (7a)
k=1
K,
D = TGy [- Gy sin(hy + 10 +y,sin(hy, - 16} (Tb)
P
KJ . B
WE =3 H*eos(hy + 138, (7c)
k=1
with
& = (Ye +1)(kk'—1)sm(lk—1)a/2 , where .= A(l+v)—=3+v ‘ (7d)
2k, sin{A - 1)a/2 A1+ V) +3-v
In Eqs. (7),the A, and A, are the roots of the characteristic equations
sinda=~Agsina,  sin(A; +1)ot/2 =0. (8)

Similarly, the comner functions used for antisymmetirc modes are analogous to those defined for the symmetric ones
in Eqgs. (7), except the cosine functions are changed to sine functions, or vice versa, and the corresponding
characteristic equations are

sinA o= A, sina, cos(ik +1)a/2=0. ()]

Some of the A, obtained from Egs. (8) and (9) may be complex numbers, and thus result in complex comner
functions. In such cases, both the real and imaginary parts are used as independent functions in the present Riz
procedure.

The free vibration problem is solved by substituting Egs. (4)«(7) into Egs. (2) and (3) and employing the
frequency equations of the Ritz method. For the symmetric modes, for example, these are:
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a(Vmax - Tmax) =0 a(Vmax - Tmax) =0 a(Vma:x ‘Tmnx) =0

e : e — (10a)
OV max = Timax) =0 ME&Q:O (10b)
3G, ’ 8H, '

This results in a set of linear homogeneous algebraic equations involving the coefficients A,,,, B, Cpu G and H,.
The vanishing determinant of these equations yields a set of eigenvalues (natural frequencies), expressed in terms of
the non-dimensional frequency parameter, wa’(p/D)"? commonly used in the plate vibration literature. Eigenvectors
involving the coefficients 4,,,, B,.,, Cpn» G, and H, are determined in the usual manner by substituting the eigenvalues
back into the homogeneous equations. Normalized contours of the associated mode shapes are depicted on a r-6 grid
in the circular plate domain, once the eigenvectors are substituted in Egs. (4).

3. CONVERGENCE STUDIES

Having outlined the Ritz procedure employed in the preceding sections, it 1s now appropriate to address the
important question of the convergence accuracy of frequencies as sufficient numbers of algebraic-trigonometric
polynomials and Mindlin corner functions are retained. All of the frequency data discussed in the present section and
following sections are for materials having shear correction factor k? equal to 7%/12 and Poisson’s ratio v equal to 0.3.
Numerical calculations of all frequencies were performed on an IBM/RS-6000 970 powerserver with an IBM
workstation cluster using extended precision (28 significant figure) arithmetic.

Table 1 Convergence of frequency parameters wa*(p/D)'* for a completely free
Mindlin sectorial plate (o = 355", ath = 20)

Mode no. No. of . . . )
(sym Corner Solution size of polynomials
Class™ Functions 18 19 20 21 27

0 5.295 5.295 5.295 5.295 5.295

1 5.158 5.153 5.147 5.141 5.136

1 5 2.903 2.887 2.875 2.863 2.854
(A) 10 2.870 2.860 2.852 2.844 2.838
20 2.833 2.828 2.823 2.819 2.815

30 2.823 2.819 2.815 2.811 2.808

40 2.820 2.816 2.812 2.809 2.805

0 5.354 5.353 5.351 5.350 5.349

1 5.081 5.059 5.042 5.020 5.005

2 5 4.345 4.342 4.340 4336 4334
(S) 10 4323 4.322 4321 4319 4318
20 4321 4.320 4319 4317 4316

30 4321 ‘ 4.319 4318 4.317 4316

40 4320 ¢ 4319 4318 4317 4.316

0 8.952 8.951 8.950 8.948 8.947

1 8.489 8.457 8.436 8.405 8.384

3 5 7.708 7.704 7.701 7.697 7.695
(S) 10 7.680 7.679 7.678 7676 7.676
20 7.678 7.676 7.675 7.674 7.673

30 7.677 7.676 7.675 7674 7.673

40 7.677 7.676 7.675 7.674 7.673

*(8)symmetric mode; (A)antisymmetric mode
) Y

Summarized in Table 1 is the first three non-dimensional {requency parameter wa’(p/12)*? for a completely free
Mindlin sectorial plate with vertex angle () of 355° and with thickness ratio (a/ft) of 20. This example is
appropriately described as a Mindlin circular plate with a sharp notch or radial crack. Numerical results are shown as
19, 20, 21, and 22 polynomial solutions are retained in conjunction with 0, 1, 3, 10, 20, 30, and 40 Mindlin corner
functions employed for each symmetry class. The solution size of the polynomials describes the number of upper



indices M, where ¢ = 1, 2, 3, 4, 5, and 6 1n the Egs. (5) and (6). An equal number for M, (ie., M, =M, =M, =M, =
M, = M,) was used for each of the displacements. Similarly, an equal number of corner functions (i.e., ., M, = M, =
M, in Egs. (7)) was used for each of the rotations and transverse displacements. It should be noted that there are three
rigid body modes in the vibration of the completely free Mindlin sectorial plate which are not shown in the table.

It can be seen in Table 1 that the fundamental (lowest) frequency mode is an antisymmetric one. An upper bound
convergence of frequencies to an inaccurate value of 5.295 is apparent, as the sizes of polynomial series are increased
with no Mindlin comer functions. One can see in Table 1 that adding a single corner function (corresponding to the
lowest 2, and A; ) impacts the convergence rate only slightly. However, adding five corner functions improves the
convergence rate significantly. Indeed, the trial set consisting of the first five corer functions along with 18
polynomial solutions yields an upper bound frequency value of 2.903, which is much lower than the 5.158 value
obtained using a single Mindlin comner function. An examination of the next four rows of data reveals that an accurate
value to four significant figures is 2.805

4. FREQUENCY RESULTS

In Table 2, extensive convergence studies were performed to compile the least upper bound frequency parameters
wa*(p/D)" for the first six modes of completely free Mindlin sectorial plates with various vertex angles (o = 90°,
180°, 270°, 300°, 330° 350° 355° and 359°) and two different thickness ratios (i.e., a/h = 10 and 20). Frequency
solutions previously reported by Irie, et al.™ for Mindlin circular plate are also listed in Table 2. Frequency data
corresponding to the antisymmetric modes arc indicated by an asterisk (*). All frequncy results are guaranteed upper
bounds to the exact values (accurate ti the four significant figures shown in Table 2). Hence, an accurate data base of
frequencies for completely free Mindlin sectorial plates 1s presented in Table 2

Table 2 Frequency parameters wa*(p/D)" for completely free Mindlin sectorial plates

Mode Number
o3 alh 1 2 3 4 S 6

90° 20 | 1586 | 22.79" | 2994 | 37.29" | 55.63 | 64.77
10 | 1538 | 22.00° | 2867 | 3525 | 51.66 | 59.57
180° { 20 | 6893 | 9355 | 17.81° | 17.90 | 28.56" | 28.69
10 | 6813 | 9.145° | 1730° | 1737 | 2735 | 27.58
270° | 20 | 4.556" | 5957 | 9212 | 12.67° | 17.01° | 1843

10 4.455" | 5.860 9.065 12297 | 16.40 17.89
300° | 20 }3.766° | 5477 | 8267 | 10.57° | 1540 | 16.53
10 3.675° | 5.379 8.155 10.29° 15.01 15.80°
330° 20 3.179" | 4852 7.850 | 8.886° 13.02 16.04°
10 31007 | 4.757 7737 8.677 12.73 1527
350° 20 2869 | 4.419 7.702 7.956° 11.74 1517
10 2.794" | 4330 7.580 7.780° 11.50 14.54°
355° 20 2805 | 4.316 7673 7.747° 11.46 14.88"
10 27297 | 4.228 7.548 7.577° 11.23 14.29°
359° 20 2.760° | 4235 | 7.586" | 7.651 11.24 14.64°
10 26807 | 4418 7.420° 7.523 11.02 14.08"
Circ™ 20 5.330° 5.330 8.969 12.31° 12.31 20.26"
10 5.278" 5.278 8.868 12.06" 12.06 19.71°
* Antisymmetric modes

**Results for complete circular plates given by Irie et al Y

v

. From Table 2, it is seen that as the vertex angle  is increased, the frequencies are significantly decreased for any
given q/h ratios. This reveals that for completely free sectorial plates the flexural stiffness decreases as the vertex
anglc increases. The frequency results listed in Table 2 for o = 359° may be described as for a completely free
Mindlin circular plates having a sharp radial crack. [t is important to compare the frequency data for plates with a
sharp crack with the data for a compete circular plate. For the case of a/h = 20, the crack reduces the frequencies of
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symmetric modes 2, 4, and 5 by 20.54%, 14.70%, and 8.69%, respectively, and those of the antisymmetric modes 1, 3,
and 6 by 48.22%, 38.28%, and 27.74%, respectively. On the other hand, for the case of a/h = 10, the percent
reductions in the frequencies of the symmetric modes 2, 4, and S are 21.41%, 15.17%, and 8.62%, respectively, and
those in the antisymmetric modes 1, 3, and 6 are 49.22%, 38.47%, and 28.56%, respectively. One can see that the
frequency reductions of all modes due to crack are slightly higher for thicker plates (a/h = 10) than for thinner ones
(alh = 20).

For all range of vertex angles, the intluence of shear deformation and rotary inertial on the frequencies related to
alh ratios can be detected from Table 2. One can see that the frequency reducing effects of shear deformation and
rotary inertia with decreasing a/h are, in general, more significant for the antisymmetric modes

5. CONCLUDING REMARKS

Highly accurate frequencies and mode shapes for completely free sectorial plates have been obtained using a
novel Ritz procedure in conjunction with Mindlin plate theory. In this approximate procedure, the assumed
displacernents of the plate constitutes a hybrid set of complete algebraic-trigonometric polynomials along with
Mindlin corner functions that account for singular bending moments and shear forces at the vertex of acute corner
angles. The efficacy of such comer functions has been substantiated by an convergence study of non-dimensional
frequencies.

Detailed numerical tables have been presented, showing the vanations of non-dimensional frequencies (accurate
to four significant figures) with two geometric parameters, namely, vertex angle a and thickness ratio a/h. Some
fundamental understanding of the effect of highly localized stresses on the sectorial plate dynamics can be obtained
through careful examination of the frequency data offered heresn. Most of all, the accurate vibration data presented
here serves as benchmark values for comparison with data obtained using modern experimental and altemative
theoretical approaches
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