Effect of Ion beam Potential on Structural and Electrical Properties of In₂O₃ film in Reactive Ion-Assisted Deposition (R-IAD) <u>Jun-Sik Cho¹</u>, Ki Hyun Yoon², Won-Kook Choi¹, Hyung-Jin Jung¹, Serguei Kondranin³ and Seok-Keun Koh¹ ¹Thin Film Technology Research Center, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul ²Department of Ceramics Engineering, Yonsei University ³Plasma Tech Co., Ltd. Indium oxide thin films were deposited on glass substrate by using reactive ion-assisted deposition methode. Neutral indium atom was evaporated with assisting ionized oxygen in high vacuum chamber at a pressure of 8 × 10⁻⁵ torr and deposition temperature was varied from room temperature to 200 °C. Oxygen gas was ionized and accelerated by cold hallow-cathode type ion gun at oxygen flow rate of 2 sccm (*ml*/min.). Ion beam potential of oxygen ions was changed from 0 to 700 V at fixed current density. From XRD analysis, it is found that the relative peak ratio of (222)/(400) and (222)/(440) increases with increasing ion beam potential. Surface roughness of indium oxide films was changed from 25 Å to 100 Å depending on ion beam potential. Sheet resistance of indium oxide films was measured by four-point probe and varied from 38 to 380 ohms/square. Relation between structural and electrical properties will be discussed with ion beam potential of oxygen ions.