음절인식을 위한 회귀예측신경망에 관한 연구

A study on the Recurrent Predictioni Neural Networks for Syllables Recognition

  • 발행 : 1998.08.01

초록

MLP형 예측신경망, Jordan 형과 Elman 형 회귀예측신경망을 사용하여 예측차수오 kdmsslr층이 유니트수의 변화에 따른 인식결과를 CHMM과 비교하였다. 음성데이타는 100음절데이터와 ETRI 의 샘돌이 숫자음을 사용하였다. 숫자음에서 신경망의 인식률은 98.5%로 5상태 CHMM의 85.6%보다는 향상된 인식성능을 보였으며 6상태 이상의 CHMM보다는 다소 인식률이 낮게 나타났다.

키워드