천혜에서 관측한 내부파와 음장의 시간변화 특성 Time Variation Characteristics of Internal Waves and Acosutic Pressures Observed in Shallow Water

나영남, 박정수, 정문섭, 심태보 (국방과학연구소, 진혜)

요약

최근의 연구를 통해 해양의 내부파가 옴파전달에 영향을 주어 비정상적인 손실을 일 으키는 것으로 밝혀졌다. 한국 동해에도 강한 수온약충을 중심으로 내부파가 존재할 것 으로 여겨져 왔으며, 이를 규명하고자 '98년 6월 각종 장바를 동원한 해양 관측을 동해 항 근해에서 실시하였다. 또한 내부파에 의한 옴파의 전파특성을 추정하고자 음원과 수 신기를 고정한 상태에서 음향살혐을 실시하였다. 실험 결과 전형적인 내부파는 주기가 약 5~12분이고 최대 진폭은 15m 정도임이 밝혀졌다. 특히 10여개의 내부파 묶음이 약 36cm/sec의 속도로 이동하고 있음도 확인하였다. 15개의 음향센서로 이뤄진 수직선배열 수신기와 음원을 이용한 음향실험 결과 역시 4~12분 주기에서 부분적으로 스펙트럼이 높개 나타났으며, 특히 주파수 1kHz인 경우에는 4,6분 주기에서 15개의 센서에 대해 일 판되게 높은 스펙트럼 준위가 나타났다. 내부파에 의한 이러한 음파의 특성은 욤파의 모 드간 결함으로 나타나는 일종의 간섭 현상으로써 설명될 수 있다.

L서론

내부파와 조석은 천해 해양학에서는 간과 할 수 없는 중요한 현상 중의 하나이다. 충 분히 강한 수직적 밀도 구배 (Thermocline, 수은약충)가 존재할 경우 부릭에 의해 복원 되는 진동이 생길 수 있다. 내부파와 조석은 수온과 음속을 수초에서 부터 수시간까지의 주기로 변화킴으로써 천해와 심해에서 모두 혼합과 에너지 전달의 중요한 기작이 되고 있다[1]. 음향학적으로 수온의 변동은 음속 의 변화를 일으켜서 전파되는 신호의 전파 시간 변동을 알으키게 한다.

내부파와 관련된 음파의 변동 연구 기법은 그동안 많이 연구되어 왔다. 심해에서는 음 선이론에 기초한 기법이 유용한 것으로 밝 혀졌다[2]. 천해인 경우 Essen [3]은 모드섭 동에 기초한 위상변화 분석을 시도하였다. 최근의 논문에서 Lynch 둥[4]은 모드 이론 과 음선이론에 근거한 섬동기법을 이용하여 예측된 전파시간 변동과 Barents 해 극전선 (BSPF: Barents Sea Polar Front) 실험의 결과를 비교하였다. 그 결과 두 이론의 결과 는 비교적 잘 일치하였다.

한편 Tindle과 Guthire[5]는 일군의 모드 들이 보강간섭울 일으켜 특정 음선경로를 형성함을 밝혀 냈으며, Traykovski [6]는 아 들 보강간섭이 내부파에 의해 유발될 수 있 음을 주장하였다.

한국 근해에서 내부파와 이에 따른 음파 의 전파특성을 동시에 규명하고자 동시 실 함을 계획하였다. 그러나 기상여건과 선박의 사정에 의하여 두 실험이 약 3시간의 시차 률 두고 이뤄졌다. 따라서 본 논문에서는 두 현상의 직접적인 비교 분석은 지양하고 공 통이 되는 주기 특성에 대해서만 언급하기 로 한다. 먼저 내부파와 음파의 시간변화 특 성 파악을 위한 실험에 대해서 기술하고, 이 들 실험 결과의 해석 및 토의를 시도하며, 마지막으로 본 논문의 결론 및 추후 연구 방향을 제시하기로 한다.

II. 내부꽈 이론

단일 주파수에서 내부파에 의한 수직적 변위는 수직적 모드 구조와 수평적으로 전 파되는 평면파 해로써 나타낼 수 있다.

 $\zeta = \sum \Psi_n(z) \exp[i(k_n x + l_n y - \omega t)]. \quad (1)$

선형화된 운동 방정식으로부터 수직적 모드 함수의 교유치 방정식은 다음과 같이 유도 될 수 있다[7].

$$\frac{\partial^2 \Psi_n}{\partial z^2} + k_{kn}^2 \left[\frac{N^2 - \omega^2}{\omega^2 - f^2} \right] \Psi_n = 0,$$

$$k_{\rm An}^2 = k_{\rm R}^2 + l_{\rm R}^2 \,. \tag{2}$$

여기에서 M(z) = 부력 주파수, k,i = 파수, ω = 각주파수, j = 관성 주파수이다. 경계 조건은 Ψ(0) = Ψ(D) = 0이고 모드 정규화 조건은 ∫^D Ψ²_n(z) dz = 1 이다. 부릭 주파수 는 다음과 같이 정의된다.

$$N^2 = -\frac{g}{\rho_o} \frac{d}{dz} \rho(z). \tag{3}$$

여기에서 *B. Po, P는* 각각 중력 가속도, 표충 과 수충에서의 빌도이다. 수심 *2*는 위로 향 하는 방향이 양의 값이다.

식 (2)를 이산화하고 수차해석적 방법에 의해 각각의 모드 형상과 고유치에 대한 해 를 구할 수 있다.

내부과는 일반적으로 밀도가 크게 다른 경계면인 수온약충에서 발생하며 고유의 과 장, 주기, 파고 및 속도 등으로 특징지워질 수 있다. <그림 1>은 흔히 볼 수 있는 내부 파 soliton 구조를 나타내고 있다[8].

111. 내부과와 음장의 측정

내부파의 시공간적 변화 특성을 규명하기 위해 동혜시 묵호동 근혜 수심 134m 지점 에서 해양관측을 실시하였다. 해양관측은 수 중음향특화연구센터 수중음향모델링 연구실 에서 수행하였다. 관측 기간은 '98.6.1 09:00~19:00 이며, 동원된 주요 장비는 Thermister Chain (TR-7) 3조, 해류재 (W/H) 1조, 해양자료 관측 부이 1조 등이 다. 이들 장비는 모두 수중 또는 해저면액 설치되었다. Thermister Chain 3조는 삼각 형으로 약 500m 간격으로 배치되었으며, 해 류제는 그 중앙 해저면에 설치하였다.

Thermister Chain 중 2조는 짧은 주기의 내부파를 관측하기 위해 생플링 주기를 10 초가 되도록 특별히 주문 제작한 것이다. 이 들 장비는 수직적으로 9개의 수온 센서를 지니고 있어서 수온약층의 시간에 따른 수 온변화를 내부 기록장치에 기록한다. 각각의 장비로부터 내부파의 주기나 파고 동의 특 성읍 파악할 수 있으며, 3조로부터의 자료를 비교 분석하면 내부파의 진행 방향과 속도 등을 추정할 수 있다. 해류재는 조석이나 이 류 등 큰 주기의 해수 유동을 관측함으로써 내부파의 영향을 해석하는데 이용된다.

관측 당시 바람이 거의 없었고 파고도 0.5m 이하로써 해표면이 매우 잔잔한 기상 상태였다.

내부파에 의한 음파의 전파특성을 규명하 기 위해 해양 관측이 이뤄진 지점 부근에서 음향실험을 실시하였다. 관측 기간은 '98.6.1 22:02-23:00로서 약 1시간 동안이다. 음원은 원하는 주파수에서 음원준위를 조절할 수 있는 Sound Trak II 시스템을 사용하였으 며, 수신기는 수직적으로 15개의 음향센서를 지니고 있는 수직선배열 시스템을 사용하였 다. 음원과 수신기가 설치되어 선박은 각각 수심이 140m와 54m인 지점에 투묘하였으 며, 양자간 거리는 약 2.5마일이다. 응원을 수온약충에서 운용하고자 해양관 측을 실시하였으며, 이를 토대로 운용 수심 을 20m로 설정하였다. 가급적 많은 주파수 대에서 CW 신호를 발생하려 했으나 주변의 많은 어로선박에서 발생된 강한 협대역 신 호들로 인해 최종적으로 3개 주파수 (250, 670, 1000Hz)에 대해서만 165dB (//1µPa) 의 준위로 발생하였다. <그립2>는 음향신호 측정 실험의 모식도를 나타내고 있다.

수신기로 사용된 수직선배열은 15개의 음 향센서로 이뤄져 있으며, 첫 11개의 센서는 2.5m 간격 그리고 나머지 4개의 센서는 5m 간격으로 배치되었다. 이는 일종의 Nested Array 개념의 배열로서 특정 주파수 대에서 최석의 지향지수를 기대할 수 있게 설계되 었다. 결과적으로 센서가 차지하는 수심은 총 45m로서 전체 수심의 90%에 해당한다. 선배열센서로부터의 신호는 선상의 녹음기 에 저장되어 사후분석에 이용되었다. 실험기 간 동안 두 실험 선박의 엔진은 정지된 상 태로 유지하였다.

IV. 실험 결과 및 토의

4.1 내부파 관측 자료

<그림3>은 Thermister Chain 1조의 자료 를 분석한 결과의 한 예인데, 관측된 자료 중 09:00-13:00 간 4시간 동안의 자료이다. 수심 8, 18, 28, 38m의 4개 센서는 모두 수 온약충 내에 위치해 있다. 그림에서 10여개 의 내부파 묶음이 뚜렷하며, 이들은 주기 약 12분, 최대 전폭은 약 12m 정도임을 알 수 있다. 그리고 이들은 4개의 수심에서 거의 위상이 일치하고 있다. 수심 중 18m에서 내 부파의 파고도 가장 크고 시간에 따른 변화 도 크게 나타나고 있는데, 이 수삼은 수온약 충의 중심에 해당한다는 점이 주목된다.

다른 Thermister Chain과의 자료 비교를 통해 분석한 결과 이들 내부파 묶음은 외해 에서 연안쪽으로 약 36cm/sec의 속도로 움 지니는 것으로 보인다. '97년 10월 동일 해 역에서 관측한 자료에서도 5-10분 주기의 내부파가 존재하는 것으로 나타났다[9].

4.2 음향 실험 자료

음향식험 결과 언어진 15개 센서로부터와 1시간 자료를 푸리에 변화한 뒤 매초당 3개 CW 신호 주파수별로 수신준위 (dB)를 구하 였다. 각 주파수별로 CW 신호의 시간변화 를 살펴보고자 센서 번호와 시간에 따른 수 신준위를 그림으로 나타내었다(<그림3>). 주파수 250Hz인 경우 뚜렷하게 높은 수신준 위를 보이고 있으며 (특히 5번과 13번 센 서) 시간적으로 500초 이상 지속됨을 보인 다. 이러한 현상은 해양환경 변화에 따른 보 강간섭으로 불 수 있다. 일정 시각에서 모든 센서에서 수신준위가 높은 부분도 있다. 그 릮에서 시각 2000-2500초 사이에 전 센서에 대해 수신준위가 높아 마치 2개의 연속적인 띠 형태를 취하고 있다. 주파수 670Hz인 경 우 250Hz 인 경우에 비해 뚜렷하지 않으나 부분적으로 높은 스펙트럼 준위를 보인다. 그런가 하면 시간 2500-3300초 사이에선 모 든 센서에 걸쳐 낮은 준위를 보여서 옴파의 상쇠간섭이 일어난 것으로 추측된다. 주파수 1kHz인 경우 관측 초기와 500-1000초 사이 에 전 센서에 걸쳐 수신준위가 높고, 2500초 이후의 시간대에서는 낮은 수신준위를 나타 낸다. 이상 센서 및 시간에 따른 수신준위 분포로 볼 때 내부파를 비롯한 해양현상에 따라 옴파의 전달특성도 크개 변하며 (약 25dB), 그 변화는 간섭에 의해서 진폭이 커 지거나 작아지는 형태로 나타난다.

<그림4>는 수신된 신호의 센서 및 주기 별 스페트림 분포를 나타낸다. 편의상 주기 는 부(-)의 주기로 표시하였다. 주파수 250Hz인 경우 주기 25분 이상의 장주가 에 너자가 우세한 가운데, 센서 1-3번 (수심 5-12.5m)에서는 거의 모든 주파수에서 에너 지가 낮고 반대로 센서 11-12번 (수심 30.5-35.5m)에서는 주기 5분대에까지 에너 지가 높다. 또한 주기 약 5-12분대에서 부 분적으로 강한 애너지가 존재한다. 주파수 670Hz안 경우에도 센서 1-3번에서는 상대 적으로 낮은 애너지가 존재하고 전체적으로 저주파대에서 높은 에너지 분포를 보인다. 주파수 250Hz인 경우와는 달리 센서 4-7번 (수심 15-22.5m)과 센서 13번 (수심 40.5m) 에서 높은 에너지 분포를 보인다. 또한 주기 4-6분대에서도 부분적으로 높은 에너지를 보인다. 주파수 1kHz인 경우에는 생서 2번 을 재외한 모든 생서에서 장주기 에너지가 높은 가운데 특히 5번 센서는 12분 주기대 에까지 연속적으로 에너지가 높다. 그리고 주파수 250Hz인 경우에서와 같이 주기 12분 대에서 부분적으로 높은 에너지 분포를 보 인다. 특이한 점은 주기 6분과 4분대에서 거 의 모든 센서에 대해 높은 에너지 분포를 보인다는 점이다.

이상 3개 주파수에 대한 스펙트럼 분포를 통해 살펴볼 때 주기 10분대 이하에서는 광 대역 폭음 가진 에너지가 우세하나 주기 12. 6. 4분대에서는 부분적으로 또는 전 센서에 걸쳐 높은 스펙트럼 에너지 분포를 보인다. 이러한 결과는 앞의 내부파 관측 결과와 일 치하는 것으로서 내부파 등을 포함한 해양 현상에 의해 유발되었을 가능성을 강력히 여기에서 시사하고 있다.

4.3 내부과에 의한 모드 간석

내부파에 의한 음파 모드간 결합 (Mode Coupling)은 쉽게 계산이 가능하다. 원거리 에서 소멸되는 모드들을 무시하면 주어진 주파수애서는 몇개의 모드만이 남는다. 흔히 쓰이는 포물선 방정식에 기초하여 구한 해 인 [Øpr(r,z)]는 다음과 같이 국지적 모 드 고유함수인 [U_n(z)]의 함으로 나타낼 수 있다[10].

$$\boldsymbol{\Phi}_{PE}(\boldsymbol{r},\boldsymbol{z}) = \sum_{\boldsymbol{n}} A_{PE\boldsymbol{n}}(\boldsymbol{r}) U_{\boldsymbol{n}}(\boldsymbol{z}), \quad (5)$$

여기에서 U.(z)는 표충과 저충에서의 경계 조건 및 다음의 비분 방정심을 만족하다.

$$\frac{d^2 U_n}{dz^2} + [k^2(z) - k_n^2] U_n = 0, \qquad (6)$$

여기에서 k,은 고유치 (모드 파수)이다, 모 드 고유핚수는 또한 다음의 정규화 조건을 만족한다.

$$\int \rho(z) U_n(z) U_m(z) dz = \delta_{n,m}. \qquad (7)$$

식 (5)의 양편을 U_{*}(z)로 곱하고 수십에 따라 적분하면 (식 (7)을 이용) 다음과 같은 식용 언용 수 있다.

 $A_{PEn}(\mathbf{r}) = \int \rho(z) \Psi_{PE}(\mathbf{r}, z) U_n(z) dz.$ (8) 내부파가 존재하지 않는 거리에서 첫번째 모드가 작용한 후에 1차 모드에 대한 고차 모드의 상대적 진폭 А」은 다음과 같이 주 어진다

$$A_{nl} = \frac{|A_{PEn}(\mathbf{r})|}{|A_{PEl}(\mathbf{r})|}$$
$$= \frac{\left|\int \rho(z)\boldsymbol{\Phi}_{PE}(\mathbf{r},z) U_{\mathbf{s}}(z) dz\right|}{\left|\int \rho(z)\boldsymbol{\Phi}_{PE}(\mathbf{r},z) U_{1}(z) dz\right|}$$
$$= \left(\frac{A_{nR} + A_{nI}}{A_{1R} + A_{1I}}\right)^{1/2}.$$
(9)

$$A_{nR} = \left(\sum_{j=1}^{m} \rho_1 \boldsymbol{\vartheta}_R(\boldsymbol{r}, \boldsymbol{z}_j) U_n(\boldsymbol{z}_j) + \sum_{j=m+1}^{M} \rho_2 \boldsymbol{\vartheta}_R(\boldsymbol{r}, \boldsymbol{z}_j) U_n(\boldsymbol{z}_j)\right)^2,$$
$$A_{nI} = \left(\sum_{j=1}^{m} \rho_1 \boldsymbol{\vartheta}_R(\boldsymbol{r}, \boldsymbol{z}_j) U_n(\boldsymbol{z}_j)\right)$$

$$+\sum_{j=m+1}^{M}\rho_2\boldsymbol{\Phi}_{I(r,z)}U_n(z_j)\Big)^2.$$

위의 식에서 Ø_R(r,z_i), Ø_I(r,z_i)는 각각 1 번째 수심 격자에서 계산된 음장의 실수, 허 수 분분이다. 또한 M은 중의 수이고 수충-해저의 경계면은 m번째와 (m+1)번째 충 사 이에 존재한다.

Au은 1차 모드에서 교차 모드로 전어된

에너지의 정도를 나타내는 척도이다. 이처럼 모드를 개산할 수 있는 프로그램을 이용하 여 포물선 방정식으로부터 언어진 음장율 여러 모드들로 분해할 수 있다. 포물선 방정 시에 입력되는 음장은 1차이다. 만약 모드 결합이 없다면 이 1차 모드만이 존재할 첫 이다. 전파되는 중에 내부파가 존재하는 거 리 이상에서는 1차 모드 에너지의 일부가 고차 모드 영역으로 전이되게 된다. 일반적 으로 고차 모드는 해서면에 접촉하여 급속 하게 모드간 간섭과 변동을 일으킨다. Zhou 와 Zhang [10]은 내부파액 의한 모드간 간 섭으로 비정상적으로 큰 전파손실이 초래될 수 있음을 보였다.

V. 결 론

한국 동해에 관측한 내부파는 전형적으 로 주기가 약 5-12분이고 최대 전폭은 15m 정도임이 밝혀졌다. 수직선배열 수신기와 음 원을 이용한 음향실험 결과 역시 4-12분 주 기에서 스팩트림이 높게 나타났으며, 특히 주파수 1kHz인 경우에는 4분과 6분 주기에 서 15개의 센서에 대해 일관되게 높은 스펙 트럼 준위가 나타났다. 내부파에 의한 이라 한 음파의 특성은 음파의 모드간 결합으로 나타나는 일종의 간섭 현상으로써 설명될 수 있다.

해양현상에 의해 야기되는 음파의 변동을 추정하기 위해서는 음원과 수신기가 고정된 상태하에서 장시간 축적된 자료가 필요하다. 앞으로 음향모델 시뮬레이션을 통해 내부파 에 의한 음파의 변동특성을 정량화하고 모 드 간섭에 의한 영향을 좀 더 정확히 규명 하는 것이 요구된다.

참고 문헌

[1] C. Garret and W. Munk, "Internal waves in the ocean, "Fluid Mech. Vol.11, 339-369, 1979. [2] S. Flatte', R. Dashen, W. Munk, K. Watson, and F. Zachariasen, Sound Transmission through a Fluctuating Ocean, Cambridge U. P., Cambridge, 1979.
[3] H. H. Essen, F. Schirmer, and S. Sikes, "Acoustic remote sensing of internal waves in shallow water, "Int. J. Remote Sens. Vol.4, 33–47, 1983.

[4] J. F. Lynch, J. Guoliang, R. Pawlowicz, D. Ray, C. S. Chiu, J. Miller, R. H. Brouke, R. Parson, A. Plue Demann, and R. Muench, "Acoustic travel time perturbations due to the shallow water internal waves and internal tides in the Barents Sca polar front : Theory and experiment, "J. Acoust. Soc. Am. Vol.99, 803–821, 1996.

[5] C. T. Tindle and K. M. Guthrie, "Ray effects in the normal mode approach to underwater acoustics, "J. Sound Vib. Vol. 47(3), 403-413, 1976.

[6] P. Traykovski, "Travel-time perturbations due to internal waves : Equivalence of modal and ray solutions, "J. Acoust. Soc. Am. Vol.99(2), 822-830, 1996.

[7] A. E. Gill, "Atmosphere-Ocean Dynamics, Academic Press, San Diego, 154~168 and 256-260, 1982.

[8] A. R. Osborne and T. L. Burch, "Internal Solitons in the Andaman Sea, "Science Vol.208, 451-460, 1980.

[9] 감형록, 김구, 김영규, "1997년 10월 동 해사 연안에서의 단주가 내부파 관측, "한국 해양학회 춘계 학술발표대회 논문집, 9-13, 1998.

[10] J. X. Zhou and X. Z. Zhang, "Resonant interaction of sound wave with internal solitons in the coastal zone, "J. Acoust. Soc. Am. Vol.90(4), 2042–2054, 1991.

<그림2> 내부파에 의한 음파의 전파특성 규명을 위한 음향실험 모식도,

<그림3> 센서 및 시간에 따른 스펙트럼 (dB/Hz) 분포. (a) 250 Hz, (b) 670 Hz, (c) 1 kHz.

<그룹4> 센서 및 주기에 따른 파워 스 페트립 (dB²/11z) 분포. (a) 250 Hz, (b) 670 Hz, (c) 1 kHz.

