점-조화 가진에 의한 양단 자유 지지 경계 조건을 갖는 원통 셸의 방사 효율 특성에 관한 연구

김관주, 최승권'

홍익대학교 기계공학과

The Study of the Characteristics of Radiation Efficiency from the Point-Excited Cylindrical Shell under the Free Ends

Kwanju Kim, Sungkwon Choi*

Department of Mechanical Engineering, Hongik University kwanju@wow.hongik.ac.kr, gemstone@wow.hongik.ac.kr

요약

본 논문은 상용 FEM-BEM 프로그램을 사용하여 점-조화 가진(harmonic point excitation)에 의한 자유 지지 경계 조건을 갖는 원통 셸(cylindrical shell)의 방사 효 율(radiation efficiency)을 해석해 보고 그 결과를 음향 세기(sound intensity) 실험의 결과와 비교하였다. 우선 충격 해버 실험(impact hammer test)을 통한 모드 시험 (modal testing)으로 원동 셸의 공진 주파수(natural frequency)와 모드 형상(mode shape)의 특징을 살펴보 고 다음으로 접-조화 가잔에 의한 원통 셸의 방사 효율 을 SYSNOISE와 ANSYS로 해석해 보았다. 동시에 음 향 세기 실험을 통한 방사 효율을 측정하여 전산 해석의 길과와 실험의 결과를 비교해 보았다.

I. 서론

소리를 방사하는 구조물의 형태는 기본적으로 평판형 음향 방사기(planar sound radiator), 원통형 음향 방사기 (cylindrical sound radiator) 그리고 구형 음향 방사기 (spherical sound radiator)로 나누어 볼 수 있다. 본 논 문에서는 위 새 가지 중 종(bell)의 음향 특성과 유사함 을 갖는 원통형 음향 방사기에 대해 살펴보았으며, 음향 특성을 이해하는데 있어 방사 효율(radiation efficiency) 을 지표로 삼았다. 방사 효율은 음향 파워(acoustic

Table 1 Properties of a steel pipe

power)를 진동 파워(vibrating power)로 나눈 비로써 얼 마만큼의 진동 파워가 음향 파위로 전달되었는가를 수 치적으로 나타낸다. 이애 일차적으로 원통형 음향 방사 기(이하 원통 셸)라 할 수 있는 강(鑭) 파이프의 자유 진동(free vibration) 특성에 대해 실험과 유한 요소 해 석(FEM)으로 비교해 보며, 이 강(鋼) 파이프에 대해 점 -조화 가진(harmonic point excitation)에 의한 조화 응 답(harmonic response)과 그 응답에 의한 음향 방사 효 율을 유한 요소 해석(FEM)과 경계 요소 해석(BEM)으 로 살펴보았다. 또한 음향 섀기(intensity) 측정을 통한 실험적인 방사 효율과 비교해 보았다.

Ⅱ. 강(鋼) 파이프의 모드 형상

(1) 원통 셸의 모드(mode)

1) 충격 해머 실험에 의한 모드

실험에 사용한 강(鋼) 파이프의 제원은 Table 1에 나 타나 있다. 자유 지지 조건(free boundary condition)을 만족시키기 위해 탄력이 좋은 고무줄을 이용하여 파이 프를 수평으로 매달고 실험하였다. 실험에 사용한 가속 도계(accelerometer)는 DYTRAN사(社) 제품의 3100B와 PCB사(社)의 제품 A353B17 두 가지를 사용하였으며, 충격 해머(impact hammer)는 PCB사(社)의 353B03, 그 리고 FFT 분석기로는 HP사(社)의 35655A 8-CH FFT

	ヨフ	물성치		21 게 조 11	
	(외경×길이×두께)	탄성 계수(E)	필도(ρ)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
파이프	100mm $ imes$ 1000mm $ imes$ 3.55mm	200 GPa	7830 kg/m'	양단 자유 지지	

분석기를 사용하였다. Fig. 1은 파이프의 절점들을 보여 주고 있으며 실험 방법은 가속도계를 17번 절점(원통 셸 길이 방향의 중심점)에 위치시키고 충격 해머로 파이프 위의 40점을 가진 하면서 각 절점에 대한 주파수 응답 합수(FRF)를 측정하였다.

Fig. 1 A measuring point of a steel pipe

Fig. 2 Driving point FRF

Fig. 2는 구동점(driving point)인 17번 절점에서의 충 격 해머 입력 파위와 주파수 응답 한수, 상관 함수 (Coherence)를 보여주고 있다. 이러한 충격 가진으로 구 한 강(鋼) 파이프의 모드 형상의 처음 2개만 도시하면 Fig. 3과 같다. 왼쪽 첫 번째 모드 형상은 길이 방향 일 차 굽힘 모드(bending mode)이며 두 번째는 축 방향 중 심으로 약 45° 회전한 첫 번째 모드 형상과 동일한 일 차 굽힘 형상이 나타났다.

Fig. 3 First two mode shapes

2) 유한 요소 해석(FEM)에 의한 모드

유한 요소 해석 프로그램으로는 ANSYS 5.3을 사용하 였으며, Table 1에 나와 있는 제원으로 구성된 해석 모 델의 요소 개수와 종류는 Table 2와 같다.

Table 2 Properties of FE Model

	절접 개수	요소 개수 (요소 충류)
해석 모델	1800 (36×50)	1764 (SHELL63)

Fig. 4 Second mode shape by FEA

Fig. 4는 유한 요소 해석을 통한 원통 셸의 두 번째 모드 형상을 보여주고 있다. 해석 결과는 강(鋼) 파이프 유한 요소 모델이 축 대칭의 형태이므로 길이 방향(2 축 방향)을 중심으로 같은 주파수에서 45° 회전한 동일한 모드 형상이 쌍을 이루며 나타났으며 한 개의 공진 주파 수가 나타나는 것은 비틀림 모드 형상(torsional mode shape)과 길이 방향 모드 형상(longitudinal mode shape) 일 때업을 알 수 있었다. 이는 앞의 실험에 의한 모드 형상과 유사한 결과이다. 그러나 실제의 강(鋼) 파이프 는 원주 방향에 따라 불규칙한 두께와 길야를 갖고 있어 서 유한 요소 해석 모델같이 완벽한 축 대칭이 아니다. 따라서 실험에서는 같은 주파수에서 동일한 모드 형상 이 쌍으로 나타나는 현상이 아닌 인접한 주파수 범위에 서 동일한 모드 형상이 존재하였다. Table 4는 두 결과 의 상대 오차(relative error)이며 실험에 의한 값을 참값 으로 보고 구한 것이다.

Table 3 Resonance Frequency of FEA

모드번호	공진 주파수(Hz)	비고
lst	597.82 Hz	두 개씩 나타남
2nd	910.96 Hz	
3rd	914.66 Hz	11
4th	950.68 Hz	n
5th	1095.2 Hz	N N
6th	1417.8 Hz	#
7th	1489.9 Hz	11
81h	1572.9 Hz	하나만 나타납

Table 4 Comparison of Natural Frequencies

모드 번호	공진 주파수(실험)	공진 주파수 (유한요소해석)	오차 (%)
lst	602.445 Hz	597.82 Hz	0.7677
2nd	604.042 Hz	597.82 Hz	1.0301
3rd	904.542 Hz	910.96 Hz	-0.7095
4th	908.359 Hz	910.96 Hz	-0.2863
5th	920.142 Hz	914.66 Hz	0.5958
6th	922.494 Hz	914.66 Hz	0.8492
7th	944.311 Hz	950.68 Hz	-0.6745
8th	957.326 Hz	950.68 Hz	0.6942
9th	1091 Hz	1095.2 Hz	-0.3849
10th	1102 Hz	1095.2 Hz	0,6171
լլեր	1416 Hz	1417.8 Hz	-0.1271
12th	1426 Hz	1417.8 Hz	0.5750

Ⅲ. 강(鋼) 파이프의 방사 효율

(1) 조화 가진에 의한 방사 효율

1) 전산 해석을 이용한 방사 효율

접-조화 가진(harmonic point excitation)이 부여된 경 우 모드 실험에 사용한 강(鋼) 파이프의 방샤 효율을 전 산 해석으로 살펴보았다. 강(鋼) 파이프의 두째와 재질 에 의한 임계 주과수(critical frequency)는 약 3500Hz이 다. 경계 요소 해석 소프트웨어 SYSNOISE와 유한 요소 해석 소프트웨어 ANSYS를 사용하였으며, 해석 모델과

Table 5 Models of SYSNOISE

해석 방법은 두 가지를 사용하였다. 모델 A는 ANSYS 의 조화 용답을 SYSNOISE의 속도 경계 조건으로 입력 하여 해석한 모델이며 모델 B는 SYSNOISE 자체에서 제공되는 유한 요소 해석 모듈을 사용한 것이다. Fig. 5 는 해석 모델 B와 조화 가진 경계 조건을 보여 주고 있 다. Fig. 6은 모델 A의 방사 효율과 모델 B의 방사 효 율이다. 보는 바와 같이 모델 B의 방사 효율은 2000Hz와 3300Hz에서 그 값이 맞지 않는데 이것은 진동 표면의 속도 분포가 정확하게 계산되어지지 않았기 때문이며 약 920Hz에서 방사 효율이 감소하는 것은 해당 주파수 가 원통 셸의 차단 주파수(cut-off frequency)이기 때문 이다. 즉 920Hz는 빌 굽힘 모드에서 원통 셸 모드로 전 환되는 첫 번째 주파수이다.[2]

Fig. 5 Harmonic Excitation B.C. and Model I

2) 음향 세기(intensity)를 이용한 방사 효율

	해석 방법	절점 수	모드 개수	경계 조건	Fmax(Hz)
모델 A	INDIRECT (SYSNOISE) FEM (ANSYS)	1800	50	모델 중십 절점 901에 1N의 힘으로 조화 가진	2776.7
					4165.0
모델 B	DIRECT COUPLED	1990	50	모델 중심 절점 901에 1N의 힘으로 조화 가진	2776.7
					4165.0

점-조화 가진에 의한 원통 셸의 방사 효율을 음향 세 기(intensity) 실험 수행으로 측정해 보았다. 방사 효율과 음향 세기와의 관계는 음향 세기에 진동 표면의 면적을 곱한 것이 음향 파워이므로 다음 식과 같다.[8]

$$\sigma = \frac{P}{\rho c S \overline{v^2}} = \frac{I}{\rho c v^2}$$

여기서, P는 음향 파워 (Watt)이며, S는 진동 표면 의 면적 (m²), I는 음향 세기 (Watt/m²), ρ는 주위 매질의 빌도 (kg/m³), c는 주위 매질(공기)의 전파 속 도 (m/s), 그리고 $\overline{v^2}$ 는 평균 제곱 속도이다. 음향 실험 은 B&K사(社)의 Type 3548 음향 세기 탐침자(intensity probe)와 B&K사(社)의 Type 5935 2-CH 마이크로폰 앰 프, 그리고 HP사(社)의 35655A 8-CH FFT 분석기를 사 용하였고 측정 방법은 적절히 긴 측정 시간동안 측정 표 면을 균일한 속도로 쓸어 내려가며 공간 평균하는 소인 측정 방법(swept measurement)을 택하였다. 음향 세기 측정으로 구한 원통 셸의 방사 효율은 다음과 같다.

Fig. 7 Comparison of radiation efficiency

Fig. 7에서 볼 수 있듯이 주파수에 따른 전산 해석을 통한 방사 효율과 실험을 통한 방사 효율이 동일한 형태 임을 알 수 있다. 또한 실험을 통한 방사 효율은 가진 주파수가 임계 주파수(critical frequency)인 약 3500Hz 이하와 이상에서 그 차이가 확연히 들어 나고 있으며 차 단 주파수인 약 900Hz에서의 감소도 눈에 띄게 나타나 고 있다.

Ⅲ. 결론

앞에서 살펴본 점-조화 가진에 의한 원통 셀의 음향 방사 특성을 정리해 보면 다음과 같다.

첫째, 원통 셸의 모드는 저주파 영역인 빔 모드(beam mode)와 중간 주파수 영역인 원통 셸 모드, 고주파 영

역은 평판 모드(plate mode)로 이루어져 있다.[4] 둘째, 방사 효율은 원주 방향 모드 변화가 생기는 차단 주파수(cut-off frequency)에서 감소하며 첫 번째 차단 주파수에서 지배적으로 감소한다.

셋째, 방사 효율은 구조물의 기하학적 경계 조건에 크게 영향을 받지 않는다. 즉 양 끝 단의 경계 조건이 자유 지지 경계 조건이건 단순 지지(simply supported) 경계 조건이건 관계없이 동일한 원통 셀이라면 그 방사 효율 은 크게 달라지지 않는다.

참고문헌

- [1] Miguel C. Junger, David Feit, 1994, "Sound, Structures, and Their Interaction", The MIT Press.
- [2] L. Cremer, M. Heckl, 1988, "Structure-Borne Sound(Structural Vibrations and Sound Radiation at Audio Frequencies)", Springer-Verlag.
- [3] Frank Fahy, 1985, "Sound and Structural Vibration(Radiation, Transmission and Response)", Academic Press.
- [4] Richard H. Lyon, Richard G. DeJong, 1995, "Theory and Application of Statistical Energy Analysis", Butterworth-Heinemann.
- [5] NIT, 1993, "SYSNOISE REV 5.3A User's Manual".
- [6] NIT, 1993, "SYSNOISE REV 5.3A Reference Manual".
- [7] ANSYS, 1995, "ANSYS Dynamics User's Guide for Revision 5.2".
- [8] B&K, 1993, "Measurement of Sound Intensity"
- [9] B&K, 1993, "Measurement of Vibration".
- [10] HP, 1990, "HP 3566A/3567A Operating Reference".
- [11] LMS International, 1998, "LMS CADA-PC User Manual".