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PZT5 spherical shell-typed hydrophone
stimulation using a coupled FE-BE method
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Dept. of Control & Instrumentation, Chosun University

Abstract

This paper describes the application of a coupled
finite element-boundary element method to obtain the
steady-state response of a hydrophone. The
particular  structure considered is a  flooded
piezoelectric  spherical shelll. The hydrophone is
three-dimensionally  simulated to transduce an
incident plane acoustic pressure onto the outer
surface of the sonar spherical shell to electrical
potentials on inner and outer surfaces of the shell.
The acoustic field formed from the scatiered sound
pressure is also simulated. And the displacement of
the shell caused by the cxtemally incident acosutic
pressure is shown in temporal motion. The coupled
FE-BE method is described in detail.

1. Introduction

Most of hydrophones have the structure of a thin
shell sphere. It is hecause we usually want to have
omnidirectivity in its pressure-sensitive
characterisitcs. Because of its simple type of
structure, the behaviour of the spherical hydrophone
15 well known in analysis. Even so, any numerical
method for simulating the hydrophone is often
required bhecause the numerical method could be
further extended to other complicated types of
structure for better performance. Since a hydrophone
is used in water, modelling of the hydrophone must
satisfy both internal materialistic transduction and
cxternally radiating condition. In these aspects the
finite element method (FEM) and the  boundary
clement method (BEM) is perhaps the most suitable
numencal techniques for the seolution. Both methods
were developed for the numerical solution of partial
differntial equations (PDE) with boundary conditions.
Since both methods solve the PDEs by numerically
elemental integration, they are compatible each other
and therefore they can be coupled togcether {1,2]

Different types of in-air piezoclectric transducers
have been simulated by the FEM [3-5]. And also
modified FEMs such as the mixed FE perturbation
method [6] or the mixed FE plane-wave method [7]
have heen developed in order to simulate an array of
transducers or composite sonar transducers. Further
developments have been made so as to include the
cffects of infinite fluid loading on transducer surface.
For cxample, Bossut et. al. [8) and Hamonic et. al.
[9] used fluid finite elements as an extension to
structural finite elements with the condition that
outer houndary of the fluid elements represents
continued radiation. Others used ‘infinite’ fluid
elements for infinite acoustic radiation [10.11]. The

BEM is probably accepted as the most suitable
method for the radiation probiem hecause the BEM
directly solves the Helmholtz PDE with the radiation
condition [1,2].

The main aim of this paper is to simulate the
structurat behaviour of the flooded piczoelectric
spherical shell when the sonar shell is driven by
external incident acoustic presurc. The directivity
pattern of the scattered acoustic pressure is shown
in temporal motion and compared with that of a
rigid steel sphere.

2. Numerical Methods
2.1 Finite Element Method (FEM)

The following equation (1) is the integral
formulation of the piezoelectric equations:

(A+iFy = [K.Ha + [Kuld) - SFIM{a) + jalRl{a)
—{Q = (Kala + {K 6

(n
where
{F} Applied Mechanical Force
(Fi} Fluid Interaction Foree
{Q} Applied Electrical Charge
{a} Elastic Displacement
{0} Electric Potential

[Kuw) Elastic Stiffness Matrix
(K] Piezoelectric Stiffness Matrnx [Kal = [Kusl’
(Kep) Permittivity Matrix
[M] Mass Matrix
{RI] Dissipation Matrix
) Angular Frequency

The isoparametric formulation for 3-dimensional
structural elements is well documented by Allik H.
et. al. [3]. Each 3-dimensional finite eclement is
composed of 20 quadratic nodes and each ncode has
nodal displacement (a. a, a;) and electric potential
{$) variables {Fig. 1). In local coordinates the finile
clement has 6 surface planes (Efxy, *yz ! zx)
which may be exposed to external fluid environment.
The exposed surface is used as a boundary element
which 1s corr}posed of 8 quadratic nodes.

Fig.1 Each finile element
is  composed of 20
quadratic  nodes. Each
surface boundary has &
quadratic nodes.

Fig.1
2.2 Boundary Element Method (BEM)
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For sinusoidal steady - state problems, the
tHelmholtz equation, v°¥ + &% = (, reprcsents the
flmd mechanics. ¥ is the acoustic pressure with
time variation, ', and k(=0/c) is the wave number.
In order tw solve the Helmholtz equation in an
infinite fluid media, a solution to the cquation must
not only satisfy structural surface boundary condition
(BC). % = p;e a, but also the radiation

s P 2Y i .2
condition at infinity, ‘un}mf-»s( o +£9°dS = 0. I

represents differentiation along the outward normal 1o
the boundary. g, and a, arc the tlud density and
the normal displacement on the structural surface.
The Helmholtz integral equations denved from
Green’s sccond theorem provides such a solution for
radialing pressure waves,

f(((f( )M - G @ %ﬂl)ffs«= (2)
By Wp) — ¥,.(p)
-k

where Ggp. @) = ?'4”';- ro=1p— gl

p is any point in either the interior or the exterior
and q is the surface point of integration. B(p} is the
cxterior solid angle at p.

The acoustic pressure for the " global node,
P(p). is expressed in discrete form [12);

(1<:< ng)
B(p1> w(p.)

Qﬁ( oy 36&( pu t?) Gr(p:, a).aﬁf)—)dsa

N »gh‘s( o) a(!_cgfz; D~ G(p0) L;‘q;(,"j’) )ds,,
(3b)

-% 7

¥.,.(p)
(3a)

0G (0, q)

gle(q) Wm,; ------ anq N dsﬁ (3c)

v,
- G(Pz" Q) ﬁ N;(Q) an_

- ( [ N( ) aG(p-UQ) as, ) wm.; (3dy
—p; & gl g fs_N,-(a) G(p,.q)n,,dS,,)am,,-
= ”glgA"mJ{FmJ—p, @* mﬁ—;ngBi’""a m  (3€)

where nt is the total number of surface elements and
a y, ; arc three dimensional displacements. Equation

{3b} is derived from cquation (3a) by discretizing
integral surface. And eguation (3¢) is derived [rom
equation (3b) since an  acouslc  pressure  onooan
integral  surface 1s intemolated from adjacent 8
quadratic nodal acoustic pressures corresponding the
mtegral surface. Then equation (3d) is derived from
equation 13c) by swapping micgral notations with
smmming  notations.  Finally  the parentheses  of
equation {13d) is expressed by upper capital notations
for simplicity.

When equation (3¢} is globally assembled. the
discrete Helmholtz equation can be represented as

(LAY~ AM{¥ Y —+p, o [Blla}—(¥,) )
where [A) and [Bl are square matrices of (ng by
ng) size. ng is the total number of surface nodes.

Where the impedance matrices of eguation (4), [A]
and [B], are computed, two types of singularity arise
[13]. One is that the Green's [(unction of the
equation, Gy(p;, ). becomes infinite as q approaches
to p. This problem 1s solved by mapping  such
reclangular {ocal coordinates inw  triangular  ocal
coordinates and again into polar local coordinates
[14). The other is that at certain wavenumbers the
matrices become ill conditioned. These wavenumbers
are corresponding to eigenvalues of the interior
Dirichlet problem |15} One approach to overcome the
matrix singularity is that [A} and {B] of equation (4)
are modified to provide a unique solution for the
entire frequency range [16-19]. The modiflicd matrix
equation  referred 10 as  the modified  flelmholtz
gradient formulation (HGF)  (19) is  obtained by
adding a multiple of an extra integral equation 1w

cauation t4)
([Al-ANDACH(¥)=
+p, ([ BIDal D) {a ) — (¥ P’ --*"'"‘ )

wherc
vl

k- ( Nomber of surface elements adjacent a swrface noded

{Cl and D] arc rectangular matrices of (nt by ng)
size. nt is the total number of surface elements. @
symbol  indicates  that  the  rows  of  [CLID]
corresponding to surface elements adjacent a surface
node arc added to the row of |Al[B] corresponding
o the surface node. Equation (5) may be reduced in
its formulation using superseript €0 for convenience:
() =+, (AP 'B¥a)- (4% 9P, {6)

==

2.3 Coupled FE BE Method

The acoustic fluid loading on  the solid-fluid
interface generates inleraction forces. These  forces
can he related to the surlace pressures hy a coupling
matrix [I.J 12,12}

{(Fy = — [LICE) (7
where (1] = [NaNdS. N is a matrix of surface

shape functions and n 15 an outward normal vector
at the surface element. N' is the transposed form of
N matrixss.

Equations (6) and (7) indicate that the nteraction
force can be expressed by funcuions of  elastie
displacement  instcad  of  acoustic  pressure.  This
relationship can be applicd to equation (11 when the
sonar transducer model is submerged inlo the mfimice
fluid media:

(A +{L}A® g8, -

(K Wl + 0, @ TL}IA®) 1890 )
'*[K,.a]ldz}—wﬂMlla} + ol R){a)

{(Q=(A,Na+[K  HH
Since the present sonar transducer is maodelled as
a hydrophone, the internal force vector, {B), and the
applicd electnical charge vecltor, {Q). of cquation (8¢
are removed. The only appled BC [or the cquation 1%
external incidenl pressure, [L]{A )"ﬁ,..
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3. Results

The coupled FE-BE method has been programmed
with Fortran language running at a supercomputer
Cray C90. Calculation is done with double precision
and the program is made for three dimensional
structures. Because each structural node has 4 DOF,
the size of the globally assembled coeffictent
matrices of the matrix equation are 4*ng by 4*ng.
The particular structure considered 1s a flooded
piezoelectric (PZTS} spherical shell. Fig. 2 shows a
part of the whole shell. The inner and the outer radii
of the shell are 35cm and 4Acm respectively. The
shell had been divided into 128 isoparametric
elernents. The figure shows only 8 clements as a
slide which are rotationally symmetrical to z-axis.
Global node numbers are attributed at 20 nodes of
cach element. It is desired to have more elements
representing  smaller  local  regions for  higher
frequency analysis. However, calculation with ntore
number of nodes cost more time. Therefore meshing
of clements depends on the maximal limit of interest
frequency.

‘I'able 1 shows the material properties of the PZTS
piezoelectric ceramic. The actual ceramic shell is
radially polanzed and therefore the electrode is
coated radially on inner and outer surfaces. Hence,
the axially polarized property values of Table t is to
be converted to its radial polling direction by the
tensor theory [20].

soat!™ Fig. 2 A structure is
- discretized into finite
o structural elements.
yl‘;“"l‘\;;\/@//o;""' A piezoel?cFﬁc s'hell
°e can be divided into
either 128 elements.
Fig. 2
z z
ﬂ v Fig. 3 The acoustic
ﬁ pressure in the far
: field is calculated
= \ =" along  the circle
| g ﬂ}ﬁpl with the directivity
) angle @
Fig. 3

Table 1. Material Properties of PZT5 (Axiaily Polarized
Properties, Dielectric cocfficients at 100 KHz)

p | o0 [kem] C3 LI eme e lep 1573 (WL
CUEPBSE I | 2R I v ) sama ()
Chll e v | Coxl % e M | eped 59471 (W)
o e R To o ol R ot
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The present modelling of the SONAR transducer is
a pressure sensitive hydrophone. Sa, the hydrophone
is three—dimensionally simulated to transducc an
incident plane acoustic pressure onto the outer
surfacc of the sonar spherical shell to electrical
potentials on inner and outer surfaces of the shell
This acoustical energy drives the piezoelectric shell
as a receiver. The incident acoustic pressure is ol
causc scattered forwardly and backwardly after it is
struck on the outer surface of the shell sphere. From
equation (11} the acoustic pressure in the far ficld 1s
calculated along the circle with the direcuvity angle
0 {(Fig. 3). After normalizing the far field pressure,
the averaged value of the pressure is calculated.
This normalized and averaged value of the far filed
pressure is then used as Lthe guantitative degree of
the ommnidirectional directivity.

Fig. 1 shows the directivity pattern of a solid steel
sphere in polar form (a) and in rectangular form (b)
for 185150 Hz input frequency which is cquivalent to
ka=nt (a is radius {4cm)). This particular figure 1s
often used o confirm the calculation of the coupled
FE-BEM algorithm to be correct [21). Fig. 5 shows
the directivity patterns of the PZTS spherwcal shell
for the same ka=n. The inner and outer surfaces ol
the PZTS shell had been electroded. The clectroding
of the PZTS5 shell is simply done by manipulating of
the global coefficient matrix [21]. The resulting
potentials of the excited PZTS5 shell are Voo =
1.39E-2 - i7.70E-3 (V] , Vigwr = 325E-3 + {7.33E-4
IV] at ka=m, so that thier corresponding potential
difference is  0.107 [mV] in magnitude at 18515.0 II.
This potential difference valuse i1s in fact the same
as hydrophone sensitivity because the amplitude of
the incident plane pressurc wave was | [Pal
Theoretical  sensitivity  value of the present
shell-typed hydrophone is about 0412 [mV] below
19238Hz resonant frequency. Fig. 6 shows the
frequency response of the hydrophone sensitivity.

1

An?gle [deg%e] ¢
Figure 4 Normalized directivity pattern of scattered
acoustic press of a solid steel sphere (a) In polar
form (b} In Rectangular form, IR=0Ocm, OR=4Acm, 128
elements, ka=n

Fig. 7 shows the surface acoustic pressure on the
outer surface of the PZTS shell at a particular
instant phase. Since the present hydrophone
simulation is calculated for stcady-state frequency
response, its temporal deformation could be figured
with different phases. In the figure, the three
dimensional displacement has been cxaggerated o
emphasize the form of vibration. And Fig. 8 shows
the temporal moving picture of the PZTH shell for
different phascs. The input frequency is 185150 Hz.
And Fig. 9 shows directivity patterns of the
spherical shell hydrophone at different frequencies.
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The figure shows how directivity pattem is changed
with different frequencies.
1

0 h H
-200 0 200 400
{L)

-

Figure 5 Normalized directivity pattermn of scattered
acoustic press of a PZTS spherical shell (a) In polar
form (b} In Rectangular form. The inner and outer
surfaces of the ceramic shell are electroded for
equipotential surfaces respectively.
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Fig. 6 Simulated Frequency Response of Hydrophone
Sensitivity

{a) {(b)
IFig. 7 The surface acoustic pressure on the outer
surface of the PZTS shell at a particular instant
phase. The three dimensional displacement has been
exaggerated to emphasize the form of vibration. ka=

. e = -
\\\ / = o e - j? e
Pt Sua - - T
/J\ P EEENS Lot eitan S CITUTIRY pmem gt
- v o b T
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Fig. 8 Vibrational Modcé- {at 185150 Hz) for different
phases

(a) 18515 Hz
(ka=0.01m)

(b} 7406.0 Hz
(ka-0.1n}

(¢} 18515 1z
(ka=n)
Fig. |7 Direcuvity patterns at different [requencies

{d) 37030 11z
{ka=2n)

4. Conclusion

A coupled FE-BE mcthod has been developed and
applied (0 simulate a sonar wansducer. The particular
structure  considered 15 a  flooded  piezoelectric
sphencal shell. The transducer is three-dimensionally
simulated to transduce an incident plane  acoustic
pressure  onto  the outer surface of the shell to
clectrical potentials on inner and outer surfaces of
the shell. The acoustic ficld formed from the
scattercd sound pressure is also simulated. And the
displacement of the shell caused by the externally
incident  acoustic  pressure is  shown in remporal
motion. The coupled FE-BE method is very useful
for predicting the mechanical and the acoustical
hehaviour of the sonar transducer.
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