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Abstract

This paper describes the application of a coupled 
finite element-boundary element method to obtain the 
steady-state response of a hydrophone. The 
particular structure considered is a flooded 
piezoelectric spherical shell. The hydrophone is 
three-dimensionally simulated to transduce an 
incident plane acoustic pressure onto the outer 
surface of the sonar spherical shell to electrical 
potentials on inner and outer surfaces of the shell. 
The acoustic field formed from the scattered sound 
pressure is also simulated. And the displacement of 
the shell caused by the externally incident acosutic 
pressure is shown in temporal motion. The coupled 
FE-BE method is described in detail.

1. Introduction

Most of hydrophones have the structure of a thin 
shell sphere. It is because we usually want to have 
omnidirectivity in its pressure-sensitive 
characterisitcs. Because of its simple type of 
structure, the behaviour of the spherical hydrophone 
is well known in analysis. Even so, any numerical 
method for simulating the hydrophone is often 
required because the numerical method could be 
further extended to other complicated types of 
structure for better performance. Since a hydrophone 
is used in water, modelling of the hydrophone must 
satisfy both internal materialistic transduction and 
externally radiating condition. In these aspects the 
finite element method (FEM) and the boundary 
element method (BEM) is perhaps the most suitable 

numerical techniques for the solution. Both methods 
were developed for the numerical solution of partial 
differntial equations (PDE) with boundary conditions. 

Since both methods solve the PDEs by numerically 
elemental integration, they are compatible each other 
and therefore they can be coupled together [1,2]

Different types of in-air piezoelectric transducers 
have been simulated by the FEM [3-5]. And also 

modified FEMs such as the mixed FE perturbation 
method [6] or the mixed FE plane-wave method [7] 

have been developed in order to simulate an array of 
transducers or composite sonar transducers. Further 
developments have been made so as to include the 
effects of infinite fluid loading on transducer surface. 
For example, Bossut et. al.⑻ and Hamonic et. al. 
[9] used fluid finite elements as an extension to 
structural finite elements with the condition that 
outer boundary of the fluid elements represents 
continued radiation. Others used 'infinite* fluid 
elements for infinite acoustic radiation [10,11]. The 

BEM is probably accepted as the most suitable 
method for the radiation problem because the BEM 

directly s아ves the Helmholtz PDE with 다圮 radiation 
condition [1,2],

The main aim of this paper is to simulate the 

structural behaviour of the flooded piezo 신 ectric 
spherical shell when the sonar shell is driven by 

external incident acoustic presure. The directiv辻y 
pattern of the scattered acoustic pressure is shown 
in temporal motion and compared with that of a 
rigid steel sphere.

2. Numerical Methods
2.1 Finite Element Method (FEM)

The following equation (1) is the integral 
formulation of the piezoelectric equations：

+ ― [K*]{々} + [k必]— 7?](a)
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where 
{F} Applied Mechanical Force
(Fi) Fluid Interaction Force
{Q} Applied Electrical Charge
(a} Elastic Displacement
($} Electric Potential
[Kuu] Elastic Stiffness Matrix

[Ku<j] Piezoelectric Stiffness Matrix [K如]=[Ku$]'
[Kg] Permittivity Matrix
[M] Mass Matrix
[R] Dissipation Matrix

(I) Angular Frequency
The isoparametric formulation for 3-dimensional 

structural elements is well documented by Allik H. 
et. al. [3]. Each 3-dimensional finite element is 

composed of 20 quadratic nodes and each node has 
nodal displacement (ax, ay, az) and electric potential 
($) variables (Fig. 1). In local coordinates the finite 

element has 6 surface planes (土 xy, ±yz, 士 zx) 
which may be exposed to external fluid environment. 
The exposed surface is used as a boundary element 
which is composed of 8 quadratic nodes.

Fig.l Each finite element 

is composed of 20 

quadratic nodes. Each 

surface boundary has 8 

quadratic nodes.

Fig.l

2.2 Boundary Element Method (BEM)
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For sinusoidal steady-state problems, the 

Helmholtz equation, + 炉单r = 0, represents the 

fluid mechanics. 叩 is the acoustic pressure with 

time variation, e,a>\ and k(=(J/c) is the wave number. 

In order to solve the Helmholtz equation in an 
infinite fluid media, a solution to the equation must 
not only satisfy structural surface boundary condition 

(BC), -g호' = pf 温 a„, but also the radiation 

condition at infinity, hm Q(-号? + ■流= 0. £ 

represents differentiation along the outward normal to 
the boundary. pf and a„ are the fluid density and 

the normal displacement on the structural s나「face. 
The H 이 mhcdtz integral equations derived from 
Green second theorem provides such a solution for 
radiating pressure

衆阳7)
8G血 d) 

dnQ

where Gk(p, q)= 

p is any point in

waves；

- ME)으黯"= ⑵
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either the interior or the exterior 
and q is the surface point of integration. P(p) is the 
exterior solid angle at p.

The acoustic pressure for the i比 global node, 

㈣?為)，is expressed in discrete form [12]；
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where nt is the total number of surface elements and 

d m j are three dimensional displacements. Eq니ation 

(3b) is derived from equation (3a) by discretizing 
integral surface. And equation (3c) is derived from 
equation (3b) since an acoustic pressure on an 
integral surface is interpolated from adjacent 8 
quadratic nodal acoustic pressures corresponding the 
integral surface. Then equation (3d) is derived from 
equation (3c 丿 by swapping integral notations with 
summing notations. Finally the parentheses of 
equation (3d) is expressed by upper capital notations 

for simplicity.

When equation (3e) is globally assembled, 
discrete Helmholtz equation can be represented as

the

([A] —创刀){0} = + Q/ w2[B](a (4)

where [Aj and [B] are square matrices of (ng by 
ng) size, ng is the total number of surface nodes.

Where the impedance matrices of equation (4), [A] 
and [B], are computed, two types of singularity anse
[13].  One is that the Green's function of the 

equation, becomes infinite as q approaches

to p,. This problem is solved by mapping such 
rectangular local coordinates into triangular local 
coordinates and again into polar local coordinates 
114]. The other is that 걶t certain wavenumbers the 
matrices become ill-conditioned. These wavemumbers 
are corresponding to eigenvalues of the interior 
Dirichlet problem [15]. One approach to overcome the 
matrix singularity is that [A] and [B] of equation (4) 
are modified to provide a unique solution for the 
entire frequency range [16-191，The modified matrix 

equation referred to as the modified Helmholtz 
gradient formulation (HGF) [19] is obtained by­
adding a multiple of an extra integral equation to 
equation (4).

([A] —a[刀㊉"[C]){V}= ⑸
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k ■ (Number of surface elements adjacent a surface node) 
[C] and [D] are rectangular matrices of (nt by ng) 

size, nt is the total number of surface elements. ㊉ 
symbol indicates that the rows of [CJJDI 
corresponding to surface elements adjacent a surface 
node are added to the row of [A],[B] corresponding 
to the surface node. Equation (5) may be reduced in 

its formulation using superscript ㊉ for convenience； 
(W} = + pf coKA®) 'B®{ a 「'点。 (6)

2.3 Coupled FE BE Method
The acoustic fluid loading on the solid-fluid 

interface generates interaction forces. These forces 
can be related to the surface pressures by a coupling 
matrix [L] [2,121；

{F,) = — [L]{T] (7)

where [L] = JN'nNdS. N is a matrix of surface 

shape functions and n is an outward normal vector 
at the surface element. Nl is the transposed form of 

N matrixss.
Equations (6) and (7) indicate that the interaction 
force can be expressed by functions of elastic 
displacement instead of acoustic pressure. This 
relationship can be applied to equation (1) when the 
sonar transducer model is submerged into the infinite 

fluid media-

{F} + [L] (/沖)嗯

[K a) + [P/ 疽[L] (A®) - 'B®]{ a) ⑻

+ 成泌]{©}-疽 W]{a} + MT?] {a)

Since the present sonar transducer is modelled as 
a hydrophone, the internal force vector, {F}, and the 
applied electrical charge vector, {Q}, of equation (8) 
are removed. The only applied BC for the equation is 

external incident pressure,[丄](/沖广'叩%
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3. Results

The coupled FE-BE method has been programmed 
with Fortran language running at a supercomputer 
Cray C90. Calculation is done with double precision 
and the program is made for three dimensional 
structures. Because each structural node has 4 DOF, 
the size of the globally assembled coefficient 
matrices of the matrix equation are 4*ng by 4*ng. 
The particular structure considered is a flooded 

piezoelectric (PZT5) spherical sh시I. Fig. 2 shows a 
part of the whole shell. The inner and the outer radii 
of the shell are 3.5cm and 4cm respectively. The 
shell had been divided into 128 isoparametric 
elements. The figure shows only 8 elements as a 
slide which are rotationally symmetrical to z-axis. 
Global node numbers are attributed at 20 nodes of 
each element. It is desired to have more elements 
representing smaller local regions for higher 
frequency analysis. However, calculation with more 
number of nodes cost more time. Therefore meshing 
of elements depends on the maximal limit of interest 

frequency.

Table 1 shows the material properties of the PZT5 
piezoelectric ceramic. The actual ceramic shell is 
radially polarized and therefore the electrode is 
coated radially on inner and outer surfaces. Hence, 
the axially polarized property values of Table 1 is to 
be converted to its radial polling direction by the 
tensor theory [2이.

Fig. 2

Fig. 2 A structure is 

discretized into finite 

structural elements. 

A piezoelectric shell 

can be divided into 

either 128 elements.

Fig. 3
Table 1. Material Properties of PZT5 (Axially Polarized

Fig. 3 The acoustic 

pressure in the far 

fi이d is calculated 

along the circle 

with the directivity 

angle 0.

Properties, Dielectric coefficients at 100 KHz)

TTnif il Unit 11 Unit

p 7700 Kg/m
L1087E+11 
-il.4779E+9

N/m' 15.783
(N/m')/ 

(V/m)

e 1.2035E-11
-H.6042E+9

N/m°
^yz

2.1053E+10 
-i2.8063E+8

N/m2 6.9474
(N/m‘)/ 

(V/m)

Cv 7.5179E+1。
-H.0021E+9 N/m~

厂zr

zx
2.1053E+10
-i2.8063E+8

N/m" 6.9474
(N/m：)/ 

(V/m)

a 7.5090E+10
T1.0021E+9

N/m' 2.1053E+10
T2.8063E+8

N/m"
7.7175E-9 

+il.5435E-10 F/m

爲
1.2035E+11
T1.6042E+9

N/m' 或2 -5.3512 (N/折)
/(V/m： 芍

7.7175E-9 
+il.5435E-10

F/m

CM 7.5090E+10 
-il.0010E+9

N/m2 야次 -5.3512
(N/m')

/(V/m： 宜
6.9930E-9 

+il.3986E-10 F/m

The present modelling of the SONAR transducer is 
a pressure sensitive hydrophone. So, the hydrophone 
is three-dimensionally simulated to transduce an 
incident plane acoustic pressure onto the siler 
surface of the sonar spherical shell to electrical 
potentials on inner and outer surfaces of the shell. 
This acoustical energy drives the piezoelectric shell 
as a receiver. The incident acoustic pressure is of 
cause scattered forwardly and backwardly after it is 
struck on the outer surface of the shell sphere. From 
equation (11) the acoustic pressure in the far field is 
calculated along the cir시e with the directivity angle 

3 (Fig. 3). After normalizing the far field pressure, 

the averaged value of the pressure is calculated. 
This normalized and averaged value of the far filed 
pressure is then used as the quantitative degree of 
the omnidirectional directivity.

Fig. 4 shows the directivity pattern of a solid steel 
sphere in polar form (a) and in rectangular form (b) 
for 18515.0 Hz input frequency which is equivalent to 
ka=n (a is radius (4cm)). This particular figure is 
often used to confirm the calculation of the coupled 
FE-BEM algorithm to be correct [21]. Fig. 5 shows 

the directivity patterns of the PZT5 spherical shell 
for the same ka=n. The inner and outer surfaces of 
the PZT5 shell had been electroded. The electroding 
of the PZT5 shell is simply done by manipulating of 
the global coefficient matrix [21], The resulting 

potentials of the excited PZT5 shell are VOu-er = 
1.39E-2 - i7.70E-3 [V] , VinilCr 二 3.25E-3 + i7.33E-4 
[V] at ka느Ji, so that thier corresponding potential 
difference is 0.107 [mV] in magnitude at 18515.0 H. 

This potential difference valuse is in fact the same 
as hydrophone sensitivity because the amplitude of 
the incident plane pressure wave was 1 [Pa]. 

Theoretical sensitivity value of the present 
shell-typed hydrophone is about 0.412 [mV] below 

19238Hz resonant frequency. Fig. 6 shows the 
frequency response of the hydrophone sensitivity.

Figure 4 Normalized directivity pattern of scattered 
acoustic press of a solid steel sphere (a) In polar 
foirn (b) In Rectangular form, IRMcm, 0R-4cm, 128 

elements, ka^K

Fig. 7 shows the surface acoustic pressure on the 
outer surface of the PZT5 shell at a particular 
instant phase. Since the present hydrophone 
simulation is calculated for steady-state frequency 
response, its temporal deformation could be figured 

w辻h different phases. In the figure, the three 
dimensional displacement has been exaggerated to 
emphasize the form of vibration. And Fig. 8 shows 
the temporal moving picture of the PZT5 shell for 
different phases. The input frequency is 18515.0 Hz. 
And Fig. 9 shows directivity patterns of the 
spherical shell hydrophone at different frequencies.
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The figure shows how directivity pattern is changed 
with different frequencies.

Figure 5 Normalized directivity pattern of scattered 
acoustic press of a PZT5 spherical shell (a) In polar 
form (b) In Rectangular form. The inner and outer 
surfaces of the ceramic shell are electroded for

801 901

(a) 185.15 Hz (b) 7406.0 Hz

(ka-O.OUr) (ka=0.4n)

(c) 18515 Hz (d) 37030 Hz

equipotential surfaces respectively.
Hydrophone SepgitiWty

(a) (b)
Fig. 7 The surface acoustic pressure on the outer 
surface of the PZT5 shell at a particular instant 
phase. The three dimensional displacement has been 
exaggerated to emphasize the form of vibration. ka= 
n

U MW
Fig. 8 Vibrational Modes (at 18515.0 Hz) for different 

phases

(ka=n) (ka=2n)

Fig. 17 Directivity patterns at different frequencies

4. Conclusion

A coupled FE-BE method has been developed and 
applied to simulate a sonar transducer. The particular 
structure considered is a flooded piezoelectric 
spherical shell. The transducer is three-dimensionally 
simulated to transduce an incident plane aco니slic 
pressure onto the outer surface of the shell to 
electrical potentials on inner and o니ter surfaces of 
the shell. The acoustic field formed from the 
scattered sound pressure is also simulated. And the 
displacement of the shell caused by the externally 
incident acoustic press 나 re is shown in temporal 
motion. The co니pled FE-BE method is very useful 
for predicting the mechanical and the acoustical 
behaviour of the sonar transducer.
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