Sharelt: An Application Sharing System using Window Capturing
and Multicast under Heterogeneous Window Systems

Jin H. Jung, Hyun. J. Park, and Hyun S. Yang
Dept. of Computer Science / Center for Artificial Intelligence Research.
KAIST, 373-1 Kusong-dong Yusung-gu,
Taejon, Korea 305-701
email : hsyang@paradise.kaist.ac.kr

Abstract

Application sharing is the ability to use existing
applications, such as Excel or MS-Word, during a
group session without modification. In this paper,
we present the design and implementation of an ap-
plication sharing system, called Sharelt, which enable
users to share arbitrary MS-Windows applications un-
der the Win 3.1/95/NT and X window system, and
evaluation of the system performance. To share an
application, the image of the application window is
captured and transmitted to other sites. With the use
of the window capturing method, Sharelt allows any
MS-Windows application to be shared regardless of
not only the window systems but also the version-up
of window systems.
Keywords : application sharing, groupware, multicast

1 Introduction

With recent advances in computer and network
technology, a new research field, Computer Supported
Cooperative Work(CSCW), has been created to ex-
amine how computer and communications technology
can support and improve group productivity[2]. While
many CSCW systems have been developed, they are
learn how to use these new applications; and 2) the in-
sufficient functionality of the whiteboard used in the
shared workspace for group work[15]. Actually, it is ei-
ther impossible to make CSCW applications that have
all the functions users need or hard to use them.

The solution is application sharing. Application
sharing enables users to share a program running on
one computer with other people in group work. Since
users can use everyday applications, there is no need
to learn how to use them, and group work can be
progress more effectively. Because it allows a seamless
change from personal work to group work, CSCW can
be spread out more quickly[14].

Many application sharing systems target the same

- 90—

window system. Computing environment of an office,
however, 1s mixed with different window systems such
as MS-Windows, 0S/2, X window system or Mach-
intosh, while MS-Windows is dominant among. these.
So application sharing under heterogeneous window
systems supports group work more conveniently and
naturally.

In this paper, we present the design and implemen-
tation of an application sharing system, called Sharelt,
which enable users to share arbitrary MS-Windows
applications under the Win 3.1/95/NT and X window
system, and evaluation of the system performance. To
share an application, the image of the application win-
dow is captured and transmitted to other sites, so that
only one copy of the application is enough.

2 Application Sharing

The idea of shared applications in the computing
environment has been around for a long time. Appli-
cation sharing is the ability to use existing applications
such as Excel or MS-Word during a group session with-
out modification. Currently, many research and appli-
cation sharing products are targets of the X window
system. The network transparency of the X window
system allows efficient application sharing[12, 4].

In the case of MS-Windows, however, it i1s not
easy to extract information about the graphic out-
put, since the display server is tightly coupled with
the application through the Graphic Device Inter-
face(GDI). Furthermore, to enhance graphic output
speed, some hardwares control the output device di-
rectly. So it is hard to provide application sharing
under MS-Windows[5].

2.1 Sharing Environment

There are many windows systems depending on
the hardware environments. The popular ones
are MS-Windows, OS$/2, and X window system.
The previous application sharing environment is

within the same windows system. XpleXer[14],
ShowMe SharedApp{l1] are application sharing prod-
ucts under X window system, whereas ProShare[9],
NetMeeting[7], and pcANYWHERE[5] run on MS-
Windows.

In contrast, some research has been done on dif-
ferent windows system. WinDD[13] is a commercial
product which provides sharing MS-Windows applica-
tions under MS-Windows or X-Terminal. In WinDD,
the GDI on the MS-Windows are changed to X pro-
tocol to share the output image under X-Terminals.
WinDD. however, is not application sharing but an
emulator which enables multiple users to use Windows
NT. Another interesting rescarch concerns application
sharing between X window system and QuickDraw
(15]. To share any application under both windows
systems, a converter between QuickDraw and X proto-
col has been developed. Research to develop converter
modules for M5-Windows continues.

2.2 Implementation Methods

There are two ways to implement application shar-
ing; intercepting the graphic primitives and capturing
the application windows.

2.2.1 Intercepting Graphic Primitives

Intercepting graphic primitives is a popular method
under the X window system. One approach is to mod-
ify the X window system itself to support application
sharing[3]. In this approach, one can easily make a
shared application using new APIs. Another approach
is to make a virtual X-Display server[14, 15]. In this
approach, graphical output requests of an X client are
forwarded by the virtual X-Display server to several X
servers and events from these X servers are collected
and sent back to the X client.

A product which uses this method under MS-
Windows is WinDD[13]. WinDD sends the graphics
for Windows 95, Windows NT, and Windows 3.1 ap-
plications over the network to any X11 device such as
an X-terminal or a workstation and Intel-based PCs.

Since applications under MS-Windows are tightly
coupled with a display configuration, it is not easy to
provide intercepting-based application sharing. More-
over, due to some programs that directly control
graphic hardwares to enhance graphic output perfor-
mance using a special display driver, GDI messages
are not s,yfﬁcient@p/ support application sharing.

The intercepting method provides fast response
time since the data needed to share an application
is graphic primitives. This method, however, has nu-
merous critical disadvantages when used under MS-
Windows.

+ It is difficult to implement since all GDI messages
used under MS-Windows must be intercepted.

o Continuous version-up 1s needed to handle new
GDI messages when the MS-Windows version_is
changed.

e Due to different graphic primitives depending on
the windows system, protocol converters between
different windows systems are needed.

e It is hard to accammodate latecomers nto a
group session because the current state of the
shared application must be updated by playing
back the intercepted messages of the whole ses-
sion.,

2.2.2 Capturing Application Windows

In order to share applications within MS-Windows,
capturing application windows is mainly used due to
its simple mechanism. In capturing application win-
dows, captured images of an application on the desk-
top are periodically broadeast to other sites. Many
commercial products, for example, NetMeeting[7] and
ProShare[9], use this method. One of the disadvan-
tages of this approach is the slow response time, since
the size of the captured bitmap is large. On the other
hand, the advantages are the following:

o It is easy to ynplement.

o It is possible to use without modification even if
Microsoft, releases a new version of MS-Windows.

s As for special messages, such as MCI messages
for multimnedia, they are easy to share at least as
far as the images shown on the screen themselves
are concerned.

e It is easy to apply to different window systems.

2.3 The Chosen Items of This System
We select heterogeneous window systems, including
MS-Windows and X Window system as the sharing en-
vironment. To provide application sharing, a window
capturing method is selected. As a result, Sharelt al-
lows not only sharing video data which uses MCI com-
mands but also application sharing between different
window systems without protocol conversions.

3 Design and Implementation
3.1 Overview

To share arbitrary MS-Windows applications under
both the MS-Windows 3.1/95/NT and the X window

- 1m_

Creral] Archzenture

Figure 1: Powerpoint executed on the server

system, Sharelt provides application viewers for MS-
Windows and X window system. The hardware plat-
form 1s SUN Sparcld and PC Pentium 160Mhz with
32M memory. A 10 Mbit/s Ethernet is used to trans-
mit a captured bitinap and control information. For
efficient group commum('atloﬁIP Multicast is used.

Fig. 1 shows that group discussion is performed
under Win9b and the X window system using Power-
point. Fig. 1(a} is the monitor enabling the local user
to control the application sharing session. The partic-
ipants on the group session are listed on the left side.
Fig. 1{b) is a snapshot of the shared Powerpoint. Fig.
2 and Fig. 3 show the application viewer for Win 95
and X window system, respectively.

@W“*“ |
uu-(;,i:-;:/) ‘_f../* ~~~~~ - n-':-?,.“‘)‘
Peban tuuds orm

By san 2
%J (000/

Figure 2: The Application Viewer for Win95

In order to share an application among users, the
control of user input is essential. In this system, one
user at a given time can manipulate the application,
since one copy of the application is executed. That is,
only the user who has input right, called token, can
control the shared application. When a remote user
wants to use the application, he can control it after

Figure 3: The Application Viewer for X window sys-
tem

receiving the token from the AppShare Server.
3.2 System Architecture

As shown in Fig. 4, Sharelt consists of four com-
ponents: the AppShare Server, the AppShare Viewer,
the Input Recorder{ and the Input Player.

Inpet
Mpuse & Keybosrd

g
{Mouse & Kayboard)

Figure 4: System Architecture

The AppShare Server resides on the server part on
which an application is executed and takes charge of
capturing the application window as well as the input
control of the application. Periodically, the AppShare
Server captures the shared application window and
broadcasts 1t to clients. Another rule of the AppShare
Server is input control. The AppShare Server selects
input direction for the application. By default, the
user residing on the server has inpugright Based
on input permission, the AppShare Server arbitrates
between the local and remote user’s input messages. It
a remote user has input permission, the received input
messages from the client are sent to the application,

The AppShare Viewer displays a bitmap image
from the AppShare Server and shows a virtual mouse
cursor which shows the same position of the mouse on
the shared application. When a user on the client gets
input germission, the input messages which were saved

~-101-

by the the Input Recorder are sent to the AppShare
Server.

The Input Recorder records the client input. The
recorded information is the state of the mouse button,
the mouse location, the state of the keyboard, the type
of pressed key. and the time of the occurrence of the
event.

The Input Player acts as a virtual input device such
as a keyboard or mouse. Recorded input messages are
changed to real input messages and then given to the
application as if the local user generated them on the
local mouse or keyboard.

3.3 Input Translation

In order to enable a remote user to operate the
shared application on the server, it is necessary to con-
sider the remote input messages as local input mes-
sages. In the Microsoft Windows graphical environ-
ment, a hook is a mechanism by which a function can
intercept events before they reach an application[6].
To support a hook mechanisin MS provides two special
functions: JournalPlaybackProc and JournalRecord-
Proc.

The application viewer for the X window system
has several special functionalities. Since the X win-
dow system has no a hook mechanism, the AppShare
Viewer for the X window system acts as an iaput
recorder to record input messages. Another rule con-
cerns the format cenversion/of messages. The format
for input messages of the X Window system is differ-
ent from that of MS-Windows. The AppShare Viewer
converts the X events to events used on M5-Windows.
In terms of the AppShare Server, there is no need to
distinguish the input messages from which types of
application viewers.

4 Network Consideration

The amount of data to be transiitted increased
proportional to the number of users. To make an ap-
plication sharing system feasible, one must address not

only an image compression scheme to reduce th&gl_ata .

to he transmitted, but also an efficient group commu-
nication mechanism to send data from one source to
group destination.
4.1 Image Compression

Recently, many standards such as JPEG, MPEG
and H.261, have developed depending on the image to
be compressed[1]. These standards give a high com-
pression ratio with lossy compression. In application
sharing, however, the following three demands arise:
First, there must be lossless compression. Since a cap-
tured application image is computer-generated, users
notice a difference even when there is a small loss of in-
formation. Second, to allow fast response time on the

currently available networks such as Ethernet, high
compression is needed. Lastly, fast compression and
decompression should be possible. There must be a
simple way to compress/decompress in real time with-
out specialized hardware support.

In this paper, to satisfy the above requirements,
we select Run-Length Encoding(RLE) for the differ-
ence image between the current image and the previ-
ous image for the following two reasons. First, RLE
is lossless data compression[10] and allows compres-
sion/decompression in one path. Second, the updated
region of an application 1s generally limited to a part
of the screen. At this time, the difference between the
current image and the previous image may he mainly
zero except for the updated region which hag a differ-
ence value. By applying RLE to the difference image,
we can get a high compression ratio.

4.2 IP-Multicast

Distributing data to multiple participants using
connection-oriented protocols, such as TCP, can he
inefficient because the data must be transmitted over
the network multiple times, once to each target. The
solution is multicasting. Multicasting is a networking
mechanism which enables the large seale delivery of in-
formation from one sender to many recipients or from
many senders to many recipients. The main objec-
tive of multicast protocols for transporting real-time
data is to guarantee the quality of service by bounding
end-to-end delay at the cost of reliability[8]. In this
paper, we propose an efficient retransmission strategy
for minizing ene-to-end delay.

4.2.1 NACK Processing

When sending the first packet of a frame, the server
sets the total nurnber of packets for the given frame
to an Offset field. Packet loss is normally detected
by finding a gap in the packet number. However,
sinece it is possible to estimate the arrival time of the
next packet based on the relation between the received
packet number and the total number of packetgfor the
given frame, we can determing a packep loss without
receiving the next packet. After receiving the first
packet of the frame, each client estimates the next
packet’s arrival time, Tezp, based on the distance!
from the server, and waits T,;, time. If the next
packet arrives before the request timer expires, the
client adjusts T.;, using an exponentially-conveying
delay estimator,

Texp = ax* Ty + (1 - Cl’)Terp:

YWhen a client joins an application sharing session, the dis-
tance from the server to the client is calculated

-102-

where the value of 74, is the time delay between the
previous and current packet arrival time and o = 1/4
in our system.

4.2.2 Retransmission Strategy

When receiving NACKs from clients, the server in-
serts the NACK packet to the relrensmession queue
while incrementing a counter as well as the client ad-
dress. According to the status of the current sending
frame, a different retransmission strategy is used. If
the current sending packet and the NACK packet are
both the part of frame 1, the server delays retransmis-
sion until the remain packets of the given frames are

sent out. We can reduce the number of retransmission

packets by delaying the retransmission as long as pos-
sible. After sending out the last packet of the frame,
the server looks up the retransmission guene and mul-
ticasts NACK packets if the counter is more than one-
third of the participants. Otherwise NACK packets
are retransnntted to the client via a TCP connection.
If the current sending packet is a part of frame i+1
or more, the server retransmits the NACK packets to
the clients immediately via a TCP connection. As a
result, we achieve minimizing end-to-end delay at the
expense of the retransmission cost.

5 Performance Evaluation

In this section, the performance of Sharelt is eval-
uated. To measure response time for the keystrokes,
we selected MS Word that mainly used for word pro-
cessing. For response time of mouse movements Pow-
erpoint was used. According to the resolution of the
applications, average transfer time and rates as well
as response tume were evaluated.

5.1 Transfer Time

Each processing stage in the sending and receiving
terrminals introduces delay. The time needed to trans-
fer an application bitmap image from the server to
clients can be divided into the following four stages:
capturing a window image from the frame buffer, cal-
culating the difference image between the current ime-
age and the previous image, processing the difference
image,to,rgg}engjc_}l@ata, and {ransmitting the run-
length data to client, 1t also takes time to decode a
received image and display the bitmap on the client
screen. Since the time taken by the client is constant
depending on the resolution of the shared application,
we omit it.

We evaluate how much time is taken for each stage
using MS Word and Powerpoint during@ve minutes.
Table 1 summarizes the processing time for each stage
depending on the application resolutions. It took more

time to process Powerpoint than MS Word for each
resolution. Since Powerpoint is used to design a pre-
sentation by graphic data, the updated region was
wider than MS Werd in handling text data.

Many frames are not needed to send bitmaps to the
chient. The rate of no difference between the current
mmage and the previous one was approximately 37%.
The ume to capture a window, make the differonce
image and process runlength encoding was linear in
the size of the shared application. These stages can
be improved by using a faster CPU or a graphic ac-
celerator.

The amount of RLE data during the above exper-
iments is shown in Table 2. Images which have no
difference from the previous image were omitted. An
interesting point is that in the case of 800x600 resolu-
tion of MS Word, runlength encoded data were smaller
than the 640x484 resolution. This shows that the size
of the runlength encoded data is determined from the
updated region rather than from the resolution of the
application. Powerpoint showed more runlength data
than did MS Word. That is, the updated region of
MS Word, due to key strokes, is relatively smali. In
contrast, the updated region of Powerpoint was wider
and the update rates were faster. A similar result was
shown in the average compression ratio. In the case of
MS Word, Sharelt showed a more than 10000:1 com-
pression. Powerpoint’s average compression ratio was
3000:1, one third of MS Word’s.

Table I: Comparison of processing time depending on
the resolution of the application (msec)

{ Application [Capture | Difi. | RLE Trans. Total ||
Ms 400x300 12.78 4-30 13.86 21.09 53.23
WORD 640x484 31.62 25 TS 35.02 36.72 128.15
Fower 400x300 13.08 1772 14.37 35.82 5095
Point 640%A84 3T.57 S186 | 36.45 5739 186 27

Table 2: Comparison of RLE data depending on the
resolution of the application (bytes)

Application 400x300 G40x484 800x600 Avg Comp. ||
(Original) (120000) (309780} (480000} Fatin ||
[l MS Word [33936 | 111310 | @e2:9 | 7i1.33 | icozasa: |)
[Powerpoint || 115843 | 118664 | 4113.84 | 2153.30 | 33851 1

5.2 Response Time

When the response from the keystrokes or mouse
movements is slower than expected, users feel incon-
venienced. Response time is the time that elapses after
a remote user invokes input messages by keyboard or

- 103~

mouse before the result is shown on the screen. A user
on the server can get a response for his input immedi-
ately. In contrast. client users get the result image of
an application from the server. So the response time
for remiote users is inversely proportional to the frame
rates.

Fig. 5 shows the client response time when a
6R0x484 resolution of MS Word is shared. The aver-
age response time was around 136 msec. That speed
is the same as the input 7 characters per second{cps}.
In expert terms. 7 cps is somewhat slow. Application
sharing, however, is used when groups of people work
together, so_intensive word processing seldom occurs.
To imprové keystroke response time, a focus technique
can be used. For example, as long as the content in
the application window is not scrolled, the updated
region is restricted within a small area. So there is no
need to capture the whole application window.

0o [
Gaet

faspangce Time (m

N

Figure 5: Response time for 640x484 MS Word

One possible way to enhance the mouse move-
ment response time is by applying GDI message-
intercepting to extract the updated region of the ap-
plication window.

6 Conclusion and Future Research

In this paper, we have presented the design and
implementation of Sharelt which allows users to share
arbitrary MS-Windows applications under both Win
3.1/95/NT and the X window system using a cap-
tured window bitmap, and evaluated the system per-
formance. To achieve fast response time, we use run-
length encoding for the difference image between the
current image and the previous image and multicast-
ing with an efficient retransmission strategy. Sharelt
can be used in a shared workspace of CSCW systems
such as desktop conference systems and on-line soft-
ware training,

Future research remains to be done. We are in-
terested In an application viewer nsing JAVA. Since
JAVA can be executed on platforms-independent envi-
ronments, there is no need to make application viewers
for each window system. Lastly, the notion of mak-
ing application sharing private and secure needs to be

addressed.
References
[1] Andleigh PK, Thakrar K (1996) Multimedia Sys-

2]

[L3]

—104 -

tems Design. Prentice Hall

Ellis C, Gibbs S, Rein G (1991) Groupware Some
Issues aund Experiences. Commun ACM 34: 38-538

Garfinkel D, Welti BC, Yip TW (1984) HP
SharedX: A Tool for real-time coolaboration. HP
Journal 45:23-36

1 Gutekunst 1. Bauer D, Hansan GC, Plattner B

(1095) A distributed and Policy-Free General-
Purpose Shared Window System. IEEE/ACM
Trans on Networking 3: 51-62

| Lori M (1996) Dialing in to Win 95. PC Week 2

Marsh K (1992) Microsoft Windows Hooks. Mi-
crosoft Development Library

NetMeeting
http://www.microsoft.com/ie/ie3/netmtg htm

Pejhan S, Scjwartz M, Anastassiou D (1996) Er-
ror Control Using Retransmission Schemes in
Multicast Transport Protocols for Real-Time Me-
dia. [IEEE/ACM Trans on Networking 4: 413-427

ProShare hitp://www.intel com/commr-
net/proshare/techinfo/index.htm

Rabbani M, Jones W {1991) Digital Image Com-
pression Techniques. SPIE Press

ShowMe SharedApp http://www.en.sun.
com/products-n-solutions/sw/ShowMe/
Products/ShowMe_SharedApp.html

Wahab HA | Jeffay, K (1992) Issues, Problems and
Solutions in Sharing X Clients on Multiple Dis-
play. TR92-043, Univ. of North Carolina

WinDD
User Information http://www.tek.com/Network
_Displays/Support/windd/winddusr/main htm

Wiladinmir M (1995) The Application Sharing
Technology. hitp://landru.unx.com/DD/ advi-
sor/does/jun95/jun9ds minenko shtml

Wolf KH, Froitzheim K, Schulthess P (1995} Mul-
timedia Application Sharing in a Heterogeneous
Environment. In: ACM Multimed 95 San Fran-
cisco, California

