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Abstract

An optical implementation of higher order neural networks based on principal component analysis
and time integration has been described. The principal component analysis combined with time
integration allows larger input size than fully spatial neural networks at the cost of certain amount
of time consumption. This time-integration usage actually breaks down the barrier of the maximum
space-bandwidth product that optical systems can offer.

1. TIntroduction

Higher order neural networks are a useful way of expanding a data set and thereby utilizing
that data better-especially in a single layer network [1j. The higher crder nenral networks have
demonstrated dramatic improvement of its storage capacity and the noise immunity [1]. The problem
is that even a second order neural network requires as large as O(N?®) interconnection networks to
store one-dimensional vectors of N clements. Consequently, this limits the size of the input pattern.
One way of solving this problem is to make the size of the memory matrix the same as that of input
patterns and utilize the time domain to implement the recall process. Principal component analysis
combined with time integration [2,3] can be used fo implement this idea, The purpose of this paper
is to show that combining optics with principal component analysis and time integration allows us
to operate an optical two-dimensional any higher order neural networks, with the physical size of
the memory space the same as that of input vectors. This permits increased dimensionality of the
input vectors.  The system we propose to use is based on the principal component analysis which
provides practical implementation of parallel rank-one N* interconnection system discussed earlier

{2.31.
In a Hopfield-like second-order neural network, we store a set of Af binary patterns Vi
(¢=12,---,M and 1, = 1,2,- -+, N) using the sixth order matrix {tensor)

M
Wiskima = 3_(2V5 — L2V - D(2V5, — 1), (1
=1

where the inpat is asswmed to be the unipolar binary [1, 0] and Wi;gimn is a sixth-rank tensor which
plays the role of recalling the stored information from distorted input pattern. The output pattern
yi; for this memory can be retrieved by performing

N N

Y5 = Zzwajkimn Tinn Tkt ‘ (2)

kI mn

and' thresholding the output with predetermined threshold levels, and feeding it back into the input
until convergence is achieved. It is assumed that we are using the same 2D x vector for both x
terms.

To umplement the second order neural networks based on principal component analysis, the
optical system shown in Fig. 1 can be directly used, where, the time integration for k and i
implements the second order neural network. The advantage of this time mtegration usage is that,
instead of the space domain, we can utilize the time domain to overcome the size limitation of the
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Figure 1: Schematic diagram of massively parallel interconnections for optical neural networks. The
amplitude modulator, SLM1, S5LM2, and SLM3J implement the singular values s;’s, input vectors,
eigenvectors vT, and u, respectively.

optical system. Moreover, according to the principal component analysis, we may use less number of
principal components than & x r at the expense of very little degradation of the system performance.
This gives extra time saving, and thus provides beiter system performance than conventional higher
order neural networks.

For computer simulations, we first encoded M = 6 characters “C”, “A”, “O0”, “I", “F”, and
“5" with 10 x 10 binary pixels. Then these 6 hinary patterns are stored in the memory matrix W
based on outer-product learning rule. Very interestingly, all the rearranged submatrices W;'s are of
rank r = M. So, il is easy to see that the rank r approximation of the submatrices W; produces
the exactly same resnlts as the original Hopfield neural network does. Moreover, the set of singular
values and the corresponding eigenvectors of W;’s showed a highly structured appearance, which
can reduce the reconfiguration time of the overall system. In our simulation, only 20 different sets
out of 100 were repeated. Therefore, about 80 % of the overall processing time could be saved. This
phenomenon is readily understandable in terms of object redundancies.

If we utilize time as an additional domain, we can implement any higher order neural net-
works with less space bul more time expenditure. The second-order neural network with principal
component analysis allows the size of the input pattern up to N = 1,000 at the cost of r x N2
recanfiguration time for the time mfegration. The increase of the size of the input pattern is ob-
tained because the size of the memory space is same as that of the input. Moreover, the repeated
appearance of the same set of the singular values and the corresponding eigenvectors allows us to
save about B0 % of the overall processing lime. The system is, of course, adaptive because we use
real-time SLMs for the implementations of the u’s and v's.
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