서 더 많아 다량의 이들 이온들이 B층 이하로 용탈되고 있음을 보였다. 세 임분 모든 층위의 토양수에서 Ca이 양이온 중 가장 많은 양을 차지해 토양수 내 주된 양이온임을 보였다. SO4는 참나무림에서 B층의 토양수를 통하여 가장 많은 양이 유 출되어 양이온의 용탈시 함께 용탈되는 주된 음이온임을 보였다. 참나무 임분에서 토양수 내 NO₃의 양은 임목의 생장이 왕성한 1997년 7월과 8월에 O층 90.4kg/ha, A층 83.9kg/ha, B층 69.3kg/ha 등으로 하층으로 갈수록 그 양이 감소하였는데 이는 임목으로의 흡수에 의한 결과로 사료되며, 세 수종 모두에서 토양수 내 PO4이온의 양이 O층 > ∴층 > B층의 순으로 나타나는 것도 임목으로의 흡수에 의한 것으로 사료된다. 모든 양료는 강우의 양이 많은 장마기간 동안 다량으로 유기물층으로부 터 무기광물토양층으로 유입되고, 또한 무기광물토양층으로부터 유출되었다. 특히 PO4는 7월과 8월에 O층의 토양수 내 양이 각각 낙엽송림 47.4kg/ha와 116.9kg/ha. 잣나무림 64.3kg/ha와 68.7kg/ha, 그리고 참나무림 32.2kg/ha와 52.9kg/ha로써 연구 기간 중 전체이동량의 58~68%를 차지해 강우강도와 강우량이 양료의 동태에 주된 영향을 주는 인자로 나타났다. 그리고 참나무 임분에서 O층으로부터 A층으로 토양 -수를 통하여 유입되는 양료의 양이 타 임분에 비하여 적은 이유는 급경사로 인한 낙엽의 유동성이 커 O층이 얇은데 그 원인이 있는 것으로 사료되었다. 이에 반하여 잣나무 임분에서는 유기물층과 무기광물토양층(A층+B층)의 두께가 가장 두꺼워 B 층 이하로의 유출량이 적은 것으로 사료되었다. OB 106 ## Landscape changes by forest fire and regeneration press on burned area Lee, C. S., S. K. Hong Seoul Women's Univ. The effects of fire on landscape change were investigated in eastern Korea. Fire types recognized as crown, stem, and surface fires according to fire intensity were described in a fire map. GIS was introduced to understand the relationship between fire types and topographic conditions. Change of landscape was investigated by comparing vegetation map including land-use pattern before and after burning. Regeneration process after burning were explored by investigating floristic composition and growth rates of major plant species occurred in permanant quadrat installed in sites with different forest types. Fire types depended on topographic conditions and vegetation types. Major land-use type was production of edible mushroom (*Tricholoma matsutaka*). Mushrooms were obtained from *Pinus densiflora* forests existing as edaphic climax or artificially managed stands. Regeneration strategy in burned areas was sprouts from burned stumps. Higher density and growth rate of sprouts comparing with unburned area facilitated succession from *P. densiflora* forest to oak forest.