Hydrologic influence on the zooplankton dynamics in a regulated river: (Nakdong River Mulgum) Kim, Hyun-Woo^{*1}, Kyoung Ha¹, Soon-Jin Hwang², and Gea-Jae Joo¹ Dept. of Biology, Pusan National University¹, Water Quality Environment Research Center, Kyonggi Development Institute² The dynamics the Nakdong River analyzed zooplankton in simultaneously with a number of environmental factors during the period of 1994-1997. The seasonal variation of zooplankton taxa and abundance in the river were affected by both hydrologic regime and temperature. Three distinctive phases in hydrologic regime and temperature were identified (phase I: spring and fall(long residence time and moderate temp.), phase II: summer (short residence time and high temp.), phase III: winter (long residence time and low temp.) (P<0.01, n=46-56). Rapid increase in zooplankton abundance and biomass was observed in phase I (density: 1054 ± 1261 Ind./L, biomass: 156 ± 185 µgC/L, n= 85), but Shannon diversity index were low (≤1.3). Due to sudden changes in hydrology, high water temp., and frequent blue-green algal blooms in phase II, diversity and abundance of zooplankton largely varied. In phase III, even though long residence time (≥ 30 days) and high Chl. a concentration ($\geq 20~\mu g$ /L; small diatoms consisted of more than 70-80% of phytoplankton communities) were maintained, the zooplankton abundance was low (≤ 100 Ind./L), mainly due to low temperature. These results suggest that hydrology and temperature were of main factors affecting the seasonal variation of zooplankton community structure in the Nakdong River.