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ABSTRACT

In this paper we propose smooth nonparametric estimator of Mean Residual
LifeMRL) based on a complete sample. This estimator is constructed using
estimator of cumulative failure rate which is derived as the maximum likelihood
estimate of cumulative failure rate in the class of distributions which have
piecewise linear failure rate functions between each pair of observations. We
derive the asymptotic properties of the our estimator. The proposed estimator is
compared with previously known estimator by Monte Carlo study.

1. Introduction

Let F be a continuous life distribution(G.e., F(x)=0 for x<0) with the finite
first moment and let X be a nonnegative random variable with distribution F.
The mean residual life(MRL) function e(x) is defined as

e(x)=E(X—x| X>x), (1.1)
The MRL is the expected remaining lifetime, X —x, given that the item has

survived to time x. The MRL function e(x) in (1.1) can also be written as

fm?( w) du

I SR
Flx
where F(x)=1— F(x) is the reliability function.

The MRL function plays a very important role in the area of engineering,
medical science, survival studies, social sciences, and many other fields. The MRL
is used by engineers in burn-in studies, setting maintenance policies, and in
comparison of life distributions of different systems. Social scientists use MRL,

e(x)=

1) This work was partially supported by the Basic Science Research Institute Program,
Ministry of Education, 1997, Project No. BSRI-97-1415.
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also called as inertia, in studies of lengths of wars, duration of strikes, job
mobility etc. Medical researchers use MRL in lifetime experiments under various
conditions. Actuaries apply MRL to setting rates and benefits for life insurance.

Hall and Wellner(1981) derive that all MRL functions associated with
distributions having a finite mean must satisfy three conditions:

e(x)=0, €ex)=-1, fooo 1

e(x)

dx=oc0,

See also Bhattacharjee(1982) for another characterization of MRL. Knowledge of
the MRL function completely determines the reliability function, via the relation

% -1
e(O)exp{—f[e(u)] a’u}
0
e(x) ’
Kotz and Shanbhag(1980) derive a generalized inversion formula for distributions
that are not necessarily life distributions. Hall and Wellner(1981) have an excellent

F(x)= x=0. (1.2)

discussion of (1.2).
We consider nonparametric estimation of mean residual life e(x). The estimation
of e(x) is very useful in practice and a few nonparametric estimation procedure

have been suggested in the literature. The empirical MRL estimator, e,(x),

proposed by Yang (1978) can be obtained by replacing F of equation (1,1) with

the empirical distribution as shown by the following equation

+1(X(,)—x) for X (n<x<X (441

_ for x=2X (,,

for £k=0,1,,n—1, X (=0 and X ()< X (9¢-*-{X (,» is the order statistics of
a random sample X;,X,,--,X, For case of ties, the estimator is lightly
modified as given in Guess and Proschan(1988). Yang(1978) has shown that e,(x)

is no unbiased estimator of e(x). However, Yang(1978) proved that e,(x) is

asymptotically unbiased, uniformly strong consistent, and converges in distribution
to a Gaussian process. Mi(1994) propose an estimator which has a mean residual
life function satisfying the same requirement on the shape for any member of
classes which have decreasing, increasing or upside-down shaped mean residual
life.

In this paper we propose nonparametric estimator of e(x) based on a complete
‘sample. This estimator is constructed using the estimator Z(x), where A(x) is

derived as the maximum likelihood estimate of cumulative failure rate A{x) in the
class of distributions which have piecewise linear failure rate functions between

each pair of observations. The resulting estimators of e(x) is smooth. We derive
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the asymptotic properties of the our estimators. Monte Carlo simulation are
conducted to investigate the performance of our new nonparametric estimators of
Mean Residual Life. Smooth nonparametric: estimation procedures are discussed in
Section 2. Section 3 is devoted to proof of main theorems. Results of Monte carlo
simulation are presented in Section 4.

2. The Proposed Estimator

Let K denote a positive integer and let &,---,&x be a (simple) knot sequence
in [0,) where 0<&<:-<{&x<o0. Let S denote the collection of piecewise
continuous linear functions s on [0, £x] such that the restriction of s to each of
the intervals [0, &1,[&;, &1, [ k-, €k] is a linear function. Then S is the

(K+ 1)-dimensional vector space and has a basis By, By .-, Bx. (See de Boor,
1978)

Let @ denote the collection of all column-vector &= (8, 6;, -, 0 'cR*H!

such that éb@,-B,(x))O. Given #e6, we approximate the failure rate function
f=

by
Ax: 6) = goé’ij(x) @1)

over the interval (0<x<£y. For the approximation (2.1_), the corresponding

cumulative failure rate and reliability function are given by

A(x:0) = ga,- [ Bwdu,

— X
F(x:6) = exp(— ﬁoe,f B,(u)a’u).
= 0
We determine the coefficients of the linear combination by maximizing the
likelihood function. Let X;,X,,-,X, be a random sample from a life

distribution F with a density function f. Then the log-likelihood function

corresponding to the approximation (2.1) is determined by

(6)= 2 Az 0)— 2 [ A O)du,
We place the knots &<£<--<&¢ by distinct failure time X ;H<X <

(X' () which are different sorted values of X, X,,-",X,. Using Bf(&)=1

’
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and 0 at other knots gives the minimizing solution '5’0=0 and

;- %
" gfoxiB,-(u)du ,

where m; is the number of failure times equal X (j. Then the estimate of the

for ;=1,2,--, K,

cumulative failure rate is

mjj(; B,(u)du

= gfoxiB,-(u)du .

The estimator (2.2) is a non-negative differentiable monotone increasing function

Alx)=

(2.2

of x on the interval [0, £x] and thus the estimate of the reliability,

. m,-fxB,-( u)du
F(x)= - e
X, €eXp ]21 Zlfo XB]_( u)du

is a differentiable monotone decreasing function on this interval. With this
estimator of F, we define the estimator e(x) of e(x) as
. X e
X— fo F(w)du

F(2)

where X is the sample mean. By the definition, this is a continuous estimator of

e(x)= (2.3)

e(x). The asymptotic properties of this estimator are obtained under the following

assumptions.

Al. F is continuous
A2. Tpéw, where Tr= sup{x: F(x)>0)} .
A3. Hp= e(O)<°°

Now we have the following results. We present the results in this section and
provide proofs in Section 3.

THEOREM 2.1 Let x=[0, 7], O(T(I Ty and let assumptions Al-A3 be

satisfied. Then the estimator e(x) is consistent for e(x).

. THEOREM 2.2 Let T<oo satisfying F(7)>0 and let assumptions A1-A3 hold.
Then the process {Vn( e(x)—e(x)) : x€[0, T1} converges weakly to a mean
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zero Gaussian process with covariance structure

_ FOFW A - FOFR (1)
Nx.) (P F()?

where  6(s, )= E{XI(s{ F(x)<B} and ¢*(s, D= Var{XI(s{ F(x)<). Here

I( +) is the indicator function.

3. Proof of Theorems

Let A,(x) denote the empirical cumulative failure rate function defined by
1€ <x)
A= F, AL~ Frf o)) -
Then we can obtain the following Lemma 3.1 applying the technique in proof of
theorem 1 of Klotz(1982). .

LEMMA 3.1 Let x=[0, 7], 0 T<{ T and let assumptions Al-A2 be satisfied.
Then

SUP {p<s< T)\/Z( Ax)— A,(x) —:D—>O as xn—00,

To obtain the asymptotic properties of our estimator, the proofs utilize the
following Lemma 3.2.

LEMMA 3.2 Let x=[0, 7], 0<T<Ts and let assumptions Al~A3 be satisfied.
Then

sup gererVil F(x)— Fr(0)) 20 as nooo,

where F,(x) is the empirical reliability function.

PROOF Write »
Vi F(x)— F, () =Va(exp(— A (2)— exp(—A,(2)))

+Va(exp(—A,(x)— F,(x))
=—Vn( A(x)— A,(%) ) exp(~ A5(2))
+Va(exp(—A,(0))— F,(x)

where AL(x)=a,(x) A(x)+(1—a,(x)A,(x) with 0<a,(x) <1, for x=0. Note
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that a, exists by the mean value theorem. The required result follows from

Lemma 3.1 and the similar technique in proof of theorem 5 of Breslow and
Crowley (1974). [

PROOF OF THEOREM 2.1 We can write

ey X—u p(F(x) —_?(x)l
12 —etl <| T R a1
[ . — L p— -n
[(Fy-Fdu | | [ FwauFx— F)
+ ] = + | =
F(x) F(z)

Thus the right side of the above inequality (3.1) converges in probability 0 as
n—o0 by Lemma 3.2 and Theorem 5.1 of Billingsley(1968). [

PROOF OF THEOREM 2.2 Using (1.1) and (2.3), write
Vil e(x)—e(x)) =V 2(x)— e, (%)) +Vnle,(x) — e(x))

=Vn(e, (%) — e(x)) + R 1,(x) + R, (x) |

where

R0 ==V F) Fo) " (F— Fo@) [ Fo(wdu
and

Ron(0) ==V F(2) Fp(®) ' Ful® fo( F(w) — Tvn(u))du.

It follows from Lemma 3.2 and the classical weak convergence of the empirical
process that supR,,(x) and supR,,(x) converge in probability 0 as #n—c.

" Thus the required result follows Theorem 1 of Yang(1978) and Theorem 4.1 of
Billingsley(1968). []

4. Simulation Study

In this section, we perform a Monte Carlo simulation to investigate the
performance of our new nonparametric estimators of Mean Residual Life.
Simulations are performed on a super computer SP2 at Seoul National University
using the programing language FORTRAN.

To investigate the performance of our new estimators, we generate random
numbers from weibull and gamma distribution using the IMSL subroutihes. From

each of a number of specified distributions, chosen so as to have a variaty of
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shapes, we generate 1000 samples of given size. For each sample we estimate
e(x) according to our new procedures in section 2. In addition, we also estimate
e(x) using the Yang's (1978) estimators. The Bias, Variance(VAR), and Mean
Squared Error(MSE) of our estimators are compared with those of the Yang's
(1978) estimator givén distributions at each deciles of distribution F.

~Table 4.1-45 indicate the result of simulations with varying shape parameter,
and sample size n=100. From Table 4.1-45 we notice that our new estimator

seems to produce less MSE than the MSE of Yang's (1978) empirical estimator.

Table 4.1 Results of simulation from weibull distribution with

parameter a=0.7.

Empirical Proposed Ratio
F(x) BIAS VAR MSE BIAS VAR MSE ! of MSE

-0026 .0419 .0419 -0030 0417 .0418 | 1.0024
-.0013 0503 0503 -.0016 .0501 .0501| 1.0040
-.0003 .0636 .0636 -0005 0635 .0635| 1.0016

0005 0777 0777 0000 07714 0774 | 1.0039
-.0040 1020  .1020 -.0044 1015 .1016| 1.0039
-.0047 1333 1333 -0055 1317 .1318| 1.0114
-.0026 .1971 1971 -.0058 .1943 1943 | 1.0144
-.0088 3275 3276 -0114 3267 3268 | 1.0024
-0360 7875 .7888 -0562 7320 7351 | 1.0731

—_

LW N U~ W

Table 4.2 Results of simulation from weibull distribution with

parameter a=1.

Empirical Proposed Ratio
F(x) BIAS VAR MSE BIAS VAR MSE | of MSE

-.0013 0115 0115} -0015 0115 0115] 1.0000
0000 .0123 0123 | .0000 .0122 0122 | 1.0082
0009 .0142 0142 | .0008 .0140 0140 | 1.0143

-.0007 .0163 0163 | -.0010 .0162 0162 1.0062
0002 .0201 0201 | -.0001 .0199 01991 1.0101

-.0004 .0240 0240, -.0005 .0235 0235 1.0213

-.0041 0335 0335| -.0062 .0328 0329 1.0182

-.0140  .0469 0471 -.0161 0458 0460 | 1.0239

-0189 .0973 0977 | -.0266 0906 0914 | 1.0689

—_
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Table 4.3 Results of simulation from weibull distribution with

parameter a=2.

Empirical Proposed Ratio
F(x) BIAS VAR MSE | BIAS VAR MSE | of MSE

1 -.0007  .0019 .0019| -.0003 .0018 0018 | 1.0556
2 -.0017 .0020 0020 -.0012 .0019 0019 | 1.0526
3 -.0016  .0020 .0020| -.0010 .0019 0019 1.0526
4 -.0005 .0020 0020 | .0003 .0020 0020 | 1.0000
5 -.0010 .0021 0021} -.0001 .0021 0021 | 1.0000
6 -.0008 .0024 0024 0001 .0023 0023 | 1.0435
q -.0018  .0029 0029 -.0007 .0028 0028 | 1.0357
8 -.0008 .0040 .0040| .0007 .0039 0039 | 1.0256
9 -.0010 .0076 0076 0016 .0066 0066 | 1.1515

Table 4.4 Results of simulation from gamma distribution with

parameter a=2.

Empirical Proposed Ratio
F(x) BIAS VAR MSE | BIAS VAR MSE | of MSE

1 0034 0194 0194 | .0042 .0193 0193 | 1.0029
2 0037 .0209 0209 | .0039 .0208 0208 | 1.0060
3 0040  .0235 0235 0045 .0234 0234 | 1.0051
A4 -0012 0267 0267 -.0007 .0263 0263 1.0140
5 0029  .0307 0308 | .0037 .0304 0304 | 1.0128
6 0038 .0386 0386 | .0058 .0378 0378 | 1.0218
N 0047 0521 0521 0056 .0507 0507 | 1.0274
8 0121 .0759 0760 | 0133 .0747 0749 | 1.0151
9 0313 1713 17231 0245 1543 1549 | 1.1123
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Table 45 Results of simulation from gamma distribution with

parameter a=3.

Empirical Proposed Ratio
F(x) BIAS VAR MSE | BIAS VAR MSE | of MSE

1 -0015 .0298 0298 | 0035 .0295 0295 | 1.0090
2 0011 0310 0310 | .0033 .0306 0306 | 1.0124
3 0005 .0333 0333 | .0026 .0330 0330 | 1.0115
A4 -0016 .0371 03711 .0013 .0366 0366 | 1.0129
b 0015  .0426 0426 | 0046 .0420 0421 ] 1.0130
6 0012 .0509 0509 | 0055 .0499 0500 | 1.0188
7 0036  .0659 0659 | 0086 .0642 0642 | 1.0265
8 -.0020 .0935 0935 | 0059 .0904 0904 | 1.0338
9 -.0128 .1905 1906 | -.0023 1755 1755 1.0863
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