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ABSTRACT

A family of test statistics is proposed for testing whether or not the mean residual
life(MRL) changes its trend. We do not assume that the turning point or the proportion
before the turning point is known. This family includes the test statistic proposed by
Aly (1990) and Hawkins, Kochar and Loader (1992) for complete samples. We establish
the asymptotic null distribution of test statistics and obtain asymptotic critical values of
the asymptotic null distribution using Durbin’s approximation. We study Monte Carlo

simulation to compare the proposed tests with previously known tests.

1. Introduction

Let X denote the lifetime of an item having a continuous distribution function F such
that F(0) = 0 and let F(z) = 1 — F(z). The mean residual life(MRL) function, e(z), is

defined by

0 otherwise.
The MRL is the expected remaining lifetime, X — z, given that the item has survived to

time z. The unconditional mean of the distribution, E(X), is a special case given by e(0).
The MRL function plays a very important role in many areas, including engineering,

medical science, and actuarial sciences. The MRL is used by engineers in burn-in studies,
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setting maintenance policies, and in comparison of life distributions of different systems.
Medical researchers use MRL in lifetime experiments under various conditions. Actuaries
apply MRL to setting rates and benefits for life insurance. See Hall and Wellner (1981), and
Guess and Proschan (1988) for more detail of theory and application of MRL.

Based on the behavior of MRL function, various nonparametric classes of life distribu-
tions have been defined using MRL. One such class consists of those with “increasing then
decreasing mean residual life (IDMRL)”. F' is called an IDMRL distribution if there exists

a turning point 7 > 0 such that

a
—~~

")
~—

A

e(t), for 0<s<t<r,

e(s) > e(t), for T<s<t.

See Guess and Proschan(1988) and the references therein for examples and applications of
the IDMRL class. Also it is well known that F is exponential distribution if and only if e(z)
is constant. In this paper we consider the problem of testing

Hy : F is the exponential distribution

(ie. F(z) = exp(~z/p), z > 0, with x4 unknown)

against

H, : F is IDMRL, but not exponential. |
_ based on a random sample X, -+, X, from a continuous distribution F'. Guess, Hollander
and Proschan (1986) propose two test procedures for constant MRL against the trend change
in MRL when the turining point 7 is known or when the proportion p = F(r) before the
change occurs is known. Aly (1990) suggests several tests for monotonicity of MRL. These
tests consider the IDMRL alternative when neither the change point nor the proportion
is known. Also Hawkins, Kochar and Loader(henceforth HKL, 1992) develope a test for
exponentiality against IDMRL alternative when neither the change point nor the proportion
is known. Recently, Lim and Park (1998) study a family of IDMRL tests when the proportion
is known.

In section 2 we develope a family of test statistics for testing Hy against H; without
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assuming that the turning point or the proportion is known. This family includes the
test statistics proposed by Aly (1990) and HKL (1992) as its special cases. We derive the
aymptotic null distributions of our test statistics. In section 3 Monte Carlo simulations are
conducted to investigate the speed of convergence of the proposed family of test statistics
to the asymptotic null distribution, and to compare the performance of our test statistics

with those of Aly’s (1990) and HKL’s (1992) tests by the power of tests.

2. The Family of IDMRL Tests

Our test statistics are motivated by a simple observation which is a idea of Ahmad (1992).

If e(z) is differentiable and e(z) is decreasing(increasing), then

S = ) _ [@le) ~ (o)
dx F2(x)

< ()0,

where v(z) = [° F(u)du and f denotes the probability density function corresponding to
F. Thus e(z) is nondecreasing(nonincreasing) if and only if f(z)v(z) < (>)F?(z). Hence,
as a measure of the deviation from the null hypothesis Hy in favor of H; we propose the

parameter

T;(F) = sup{¢;(z; F) : = > 0}

where

bi(m F) = /xF'f<t)<f(t)v(t>—F2<t>>dt

0

+ [T ROE - s @

where j is a integer with j > —1. This parameter (2.1) coincides with that of Aly (1990)
and HKL (1992) when j = —1 and j = 0, respectively. Note that ¢;(z; F) is differentiable
in z >0 and

d _
—65(3; F) = 2P @) (@),
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clearly has the same sign as does €/(z). Thus, if F is IDMRL, but not exponential, then
@;(z; F) is strictly increasing (decreasing) for z < 7 (z > 7) and T;(F) = ¢;(7; F) > 0. I F
is exponential, then e(z) is constant and €/(z) = 0 for all z > 0, and hence the integrand of

@;(z; F) is zero, so that T;(F) = 0. Using integration by parts, we can rewrite ¢;i(z; F) as

1 - : * pive
¢i(z; F) = m(/o F(t)dt — (y+2)/0 FIT(t)dt

o0 e o}
+(j +2) / Fi*2(t)dt — 2F7+ () / F‘(t)dt).
Let F,(z) denote the empirical distribution, and let X denote the sample mean. Then

our family of test statistics is

iT T

. VnT;(F)
T X

For computational purpose, T} may be written as

Joax /n(2n; (k) —n;(0))
T == b4

where fork=0,1,---,n

nk) = ﬁg{uw)(";i)m (Y () bt - X

0 = X < Xy < -+ < X(n) denote the order statistics of the sample. For j — —1 and

j = 0, our test statistics are equal to the test statistics of Aly (1990) and HKL (1992),
respectively.

To establish the asymptotic null distribution of T}, we use the differentiable statistical
function approach of von Mises (1947) (cf. Boos and Serfling (1980) and Serfling (1980)) and
the classical weak convergence of the empirical process. Also see HKL (1992) that obtain
the asymptotic null distribution of a test statistic 7§. The asymptotic null distribution of

T} is summarized in Theorem 2.1.
THEOREM 2.1 Under Hy, i.e. F is exponential distribution with mean p,

ok ‘c *
T; = Z; =sup{Z(p) : 0<p < 1},

262



Table 2.1 Approximated quantiles of T.

quantiles of T}

a |j=0 j=1 j=2 j=3 j=4 j=5

0.90 | 1.406 1.089 0921 0.812 0.734 0.676
0.95 | 1.588 1.230 1.039 0.917 0.829 0.763
0.99 | 1.930 1495 1.263 1.114 1.008 0.927

where Z;(p) denote a mean zero Gaussian process with covariance

1 3 )
i(0,9) = 55— (1+2(1 - @)% - 21 - p)¥*?)  for p<gq.
a;(p,9) 2].Jrg( (1-9) (1-p)¥™) for p<gq
Using Durbin’s (1985) approximation, we can obtain asymptotic critical values based on

the distribution of 77 by

Pr{T} > c} = {21/2j + 3¢+ O(c ") }¢(1/2j + 3c) as ¢ — o0 (2.2)

where ¢ denote the probability density function of the standard normal distribution. Table
2.1 contains approximated quantiles of the distribution of T} for some different j, computed

from (2.2).

3. Simulation Study

In this section we perform a Monte Carlo simulation to investigéte the speed of conver-
gence of the proposed test statistics and the performance of our test statistics by simulating
the power of tests. Simulations are performed on a super computer SP2 at Seoul National
University using the programing language FORTRAN.

To investigate the empirical test size, the random numbers are generated from exponen-
tial distribution, F(z) = 1 — exp(—x), = > 0, since our test statistics are scale invariant.

Table 3.1 presents the empirical test size of IDMRL tests based on T} for some different j.
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The values in Tables 3.1 are the fraction of times that Hy is rejected in favor of H; when
Hy is true. The empirical test sizes are calculated based on 1000 réplications for; o =0.10,
0.05, 0.01; n = 10,20, ---,100. From Table 3.1, we notice that the fastest convergence of T
is obtained by using 77. The test size of T} is close to the level of significance when n > 30.
The T, test overestimate a. The T; test, for the large value of 7, slightly underestimate o.

To evaluate the empirical power of the proposed tests, the’random numbers are generated

from

- _ 8 Ledp—c V0
Fapalw) = {,3 + yexp(—az)(1 — exp(—azx)) } { [exp(az) + d}2 — ¢? }

o { lexp(az) +d — c][1 +d + ]
[explaz) +d+c][1+d - ¢]

v/4aflc
} , 220,a>0,6>0,v>0
where d = /28, ¢* = (487 + ~*)/(48%). This distribution has MRL function e, g,(z) =
B + yexp(—az)(1 — exp(—ax)), z > 0. The motivation (see, HKL 1992) for choosing F, 5.,
is that Fy 5, has IDMRL structure with the turning point 7 = In2/a for any choice of
(o, B,7) and F, g, is exponential distribution if v = 0.

Tables 3.2-3.4 present the empirical powers of our family of IDMRL tests based on Ty
for some different j when testing against alternative F, 5,, where the random numbers are
generated for various choice of o with § = 1 and v = 1. The values in Tables are based on
1000 replications for various sample size n.

From Tables 3.2-3.4, we notice that the power of all T} tests increase rapidly as a
increases (i.e., the turning' point 7 decreases) when 3 and v is fixed. When the parameter
a = 5, the largest power of T} tests is obtained by using j = 1. The largest power of T} is

obtained by using j = 0 when a = 3. When the parameter o = 1, the largest power of T}

is obtained by using T™;.
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Table 3.1 Empirical test size of IDMRL tests based on T} for some j.

n| alj=11]3=0]j=1]3j=2]j=3]j=4] j=5
10 | .106 | .097 | .084 | .087 | .008 | .102 | .116
10 | .05 | .062 | .049 | .041 | .047 | .058 | .071 | .079
.01 | .025 | .011 | .009 | .018 | .024 | .030 | .037
10 | .139 | .112 | .085 | .071 | .074 | .075 | .088
20 | .05 | .069 | .052 | .036 | .038 | .038 | .038 | .042
.01 | .024 | .008 | .011 | .012 | .012 | .016 | .019
10 | 121 | .119 | .105 | .095 | .093 | .091 | .096
30 | .05 | .067 | .062 | .049 | .044 | .050 | .052 | .061
.01 .017 | .007 | .015 | .019 | .020 | .019 | .019
10| .148 | .120 | .110 | .103 | .103 | .097 | .088
40 | .05 | .095 | .061 | .052 | .056 | .053 | .052 | .057
01| .029 | .013 | .011 | .014 | .017 | .017 | .015
10 | .136 | .106 | .092 | .081 | .086 | .087 | .079
50 | .05 | .076 | .045 | .044 | .041 | .039 | .039 | .043
0L | .025 | .006 | .008 | .010 | .010 | .013 | .014
10 | .145 | .117 | .105 | .089 | .084 | .071 | .072
60 | .05 | .070 | .053 | .046 | .044 | .040 | .041 | .040
01| .015 | .004 | .005 | .008 | .010 | .011 | .012
10 | .148 | .115 | .096 | .100 | .088 | .086 | .084
70 | .05 | .068 | .048 | .048 | .048 | .049 | .047 | .043
01| .019 | .009 | .006 | .009 | .012 | .014 | .015
10| .153 | .126 | .106 | .092 | .078 | .078 | .079
80 | .05 | .090 | .060 | .053 | .040 | .041 | .042 | .041
01| .024 | .014 | .011 | .011 | .015 | .015 | .019
10 | .125 | .099 | .098 | .097 | .099 | .098 | .094
90 | .05 | .058 | .046 | .041 | .039 | .044 | .047 | .048
.01 | .013 | .008 | .006 | .012 | .011 | .010 | .012
10 | .142 | .123 | .098 | .093 | .092 | .086 | .086
100 | .05 | .072 | .054 | .047 | .049 | .046 | .041 | .039
.01 | .017 | .006 | .007 | .010 | .012 | .013 | .014
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Table 3.2 Empirical power of T} when testing against alternative Fa,pn with parameter
a=508=1andy=1.

n| a |j=-1]j=0]j=1]j=2];=31;=4]j=5
|10 | 600 | 751 | 772 | 699 | 553 | .345 | .163
20 | 05| .455 | 629 | 593 | 476 | 272 | .106 | .058
01| 226 | .351 | .266 | .109 | .039 | .022 | .016
10| 830 | 948 | 962 | 952 | .942 | .906 | .835
40 | 05| 738 | .894 | 911 | 908 | 854 | .770 | .594
01| 461 | 735 | 740 | 664 | .475 | .248 | .060
10] 924 | 985 | 994 | 995 | .992 | .982 | .969
60 | .05 .856 | .967 | .981 | .977 | 966 | .948 | .929
01| 627 | 878 | 908 | 903 | .845 | .741 | .557
10| 957 | .996 | .999 | 1.000 | 1.000 | 1.000 | .998
80|.05| .919 | 990 | .996 | .997 | .998 | .995 | .993
01| 750 | .964 | .980 | .979 | .966 | .948 | .900
10| .985 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
100 | .05 | .964 | .998 | 1.000 | 1.000 | 1.000 | .999 | .999
01| 870 | 993 | .998 | .998 | .998 | .995 | .985

Table 3.3 Empirical power of T} when testing against aiternative F_’a,gﬁ with parameter
a=3,8=1andy=1.

n]a |[j=-1]j=0]j=1]j=2]j=3[;=4]j=5
10 | 603 | 690 | 590 | 448 | 250 | .101 | .039
20 | .05 | 463 | 533 | 415 | 235 | .079 | .027 | .016
01| 224 | 275 | .126 | .032 | .013 | .006 | .004
10| .805 | .900 | .897 | .842 | 750 | .617 | .477
40 | .05 | 681 | .811 | .775 | 688 | .524 | 376 | .218
01| 447 | 577 | 484 | 330 | .155 | .029 | .003
10| 905 | .971 | 976 | .962 | 936 | .877 | .813
60 | .05 | .825 | 938 | .940 | .903 | .824 | .735 | .612
01| 610 | 790 | .754 | 659 | .495 | .283 | .131
10| 951 | .991 | 987 | 983 | .977 | .962 | .945
80| .05| .890 | 973 | 972 | .961 | .941 | .909 | .851
01| 733 | 892 | 897 | 849 | .773 | .653 | .505
10| 966 | .995 | .998 | .998 | .995 | .990 | .984
100 | .05 | 943 | 989 | 993 | 991 | .982 | .973 | .952
01| 822 | 953 | 960 | .945 | 915 | .856 | .748
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Table 3.4 Empirical power of Tf when testing against alternative F‘a,g,., with parameter
a=1,8=1and~y=1.

n|la | j=-11j=0]j=1]|j=2]|j=3]|j=4|j=5
.10 .491 .361 191 .081 .032 .013 | .008
20 | .05 .354 233 .090 | .024 | .006 { .002 .002
.01 178 .083 | .015 | .002 | .001 .001 .001
.10 .636 .572 417 | 270 167 092 | .042
40 j .05 513 422 .265 133 .052 .019 .004
.01 .289 191 .064 | .012 .001 .000 | .000
10 |- 764 .694 | 574 | 424 | 312 .232 .148
60 | .05 .635 557 | 399 269 | .170 | .098 | .050
.01 391 .299 | .158 | .058 | .027 | .009 .002
.10 .843 .815 | .726 | .614 | .510 412 322
80 | .05 .750 711 578 | 465 | .341 240 | .162
.01 .509 459 | 300 | .185 | .088 | .033 | .015
10 | .894 .886 | .825 742 .642 .541 449
100 | .05 821 794 | 695 | b78 | 467 | .360 | .276
.01 .589 BT7 | 438 | 294 | .178 094 | .044
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