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Use of Normal Forms Technique In Control Design
Part I: General Theory
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lowa State University
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Abstract:  This is Part [ of a two part paper dealing with
control design in power systems using the method of normal
forms. In stressed power systems, due to the presence of
increased nonlinearity and the existence of nonlinear modal
interactions, there exist some limitation to the use of
conventional lincar contre! design techniques. The objective of
this work is to understand the effect of the nonlincar modal
interaction on control performance and to develop a procedure
to design controls incorporating the nonlincar information. Part
H presents the numerical results dealing with the design
procedure.

1. Introduction

Large stressed interconnected power systems exhibit
complicated dynamic behavior when subjected to
disturbances. A complete theoretical analysis of this
behavior is not feasible in large systems. A disturbance
excites numerous modes of oscillation. Only a few of
these modes are of primary interest to the system
designer. These include the poorly damped, low
frequency inter-area modes, in which generators that are
geographically far away from each other participate, and
the control modes that represent the influence of the
controllers on the system. In particular, excitation
control is called upon to increase the damping of poorly
damped inertial modes. In large systems, design of the
exciter constants usually follows from a linear systems
analysis, neglecting the possible nonlinear interaction
between modes. Recently, a number of studies have been
published that address the nonlinear behavior of large
power systems. Among them are the analysis of the
stability boundary of a stable equilibrium point (SEP) [1],
stability assessment using the TEF method [2], and
analysis of auto parametric resonances [3, 4]. A series of
papers by the authors[1,5-7] shows that second order
nonlinear modal interaction obtained via normal forms
of the system dynamics [8], allows insight into the
nonlinear behavior of a power system (including AC/DC
systems) and can be used to predict inter-area separation
[5]. For controlled power systems, [6] shows, by
analyzing a four-generator test system [9], that second
order nonlinear interactions between low frequency
inertial modes and control modes are crucial to
understand the dynamic behavior of these systems. For
power systems equipped with fast exciters, the exciter
gains have crucial influence on the system dynamic
behavior. In order to be able to tune the exciter gains for
optimal system performance, one has to understand, how
the system response changes with different gain settings.
In linear analysis, this consists of determining the
eigenvalues for various gains, and computing the
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sensitivity of the eigenvalues under gain variations. If
one takes into account the influence of the second order

normal forms on the system response, then the
corresponding  interaction  coefficients and their

sensitivity with respect to gain variations has to be
studied as well. This is the topic of the study presented
here. As we will see using the 50-generator 1EEE test
system [10] in a companion paper [11], the second order
interaction coefficients and their sensitivity with respect
to varying exciter gains yield substantial insight into
controlled power systems.

2. Approach
2.1 The Power System Model

The generators without excitation control are
represented by the classical model [12]. Generators with
excitation control are described by the two-axis model.
The block diagram of the static exciter model [13] is
shown in Figure 1.
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Figure 1: Static Exciter Model

In what follows, we concentrate on varying the
exciter gains Ka. The network is represented classically:
quasi  state-steady network parameters, constant
impedance loads, etc. Assuming the generator internal
reactance to be constant, a network representation at the
internal generator nodes can be obtained. The procedure
described in (Chapter 9 of [12]) yields the direct and
quadrature axes currents for the generators represented
in detail. The currents for the classically represented
machines can also be obtained. We assume that in an m-
generator system there are / generators represented by
the two-axis model and equipped with exciters, the
remaining m-/ generators are presented by the classical
model. Then the dynamic equations governing the
generators and the excitation system have the general
form

X = F(X) )

where,
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and F is an analytic vector field.

2.2 The Normal Form Technique

We expand (1) as a Taylor series about a stable
equilibrium point X, and obtain using again X and x; as
the state variables.

X, =Ax+1 X" HX+HOT. (2
where,
A=, row of Jacobian A which is equal to

{aF/ aX]XSI«T
H=0"F, / 0x,0%, ]y,

=Hessian matrix

Denote by J the (complex) Jordan form of A, and by
U the matrix of the right eigenvalues of A. Then the
transformation X=UY yields for the linear and the
second order terms of (2) the equivalent system

N N
yi=Ay+ ZZCL-}ikaI (3a)
I et

where,
C --an’ UTH"U=[C}]

and V denotes the mamx of associated left eigenvectors.
If the second order non-resonance condition holds, i.e. if

A # A, + X for all three tuples of eigenvalues of A,

then the normal form transformation of (3a) is defined
by

Y=Z+h2(Z) (4a)
where,
N. N )
W2(Z)=.> h2}z.z (4b)
P i
4
P —— 4
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In Z-coordinates, the system (3a) takes on the form

2= hz, G

Equations (2)-(5) allow us to obtain explicit second
order solutions for the system in the different coordinate
systems:
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Furthermore, the solution of the linear part of (3a) is
— A,
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The comparison of (6), (7), and (9) leads to the
definition of the nonlinear interaction index Il for mode
jasin[5].

() :!(yjo ~Zjo ) + max,, kz}ilzk:»zll;’ (10)

Comparing the linear part of (7} with (9) leads to the
nonlinearity index 12 which is a measure of the relative
size of the nonlinearity in the initial value, defined as

i
maxy; h2yz;,2,,

12(j)= (1)

“Jjo
The indices 11 and 12 will be used in the subsequent
analysis, as well as the second order interaction

coefficients of mode j, h2} 2,2, as they appear in
equations (7) and (8).

Linear participation factors are a weli-known method
to find out mode-machine interactions {14]. The
participation factor p, represents a measure of the
participation of the k-th machine state in the trajectory of
the i-th mode. It is given by

P = U ¥ vy (12)

Since linear participation factors are functions of
both the left and right eigenvectors, they are independent
of eigenvector scaling. Using normal forms we apply the
concept of nonlinear participation factors [15]. The
normal form initial conditions, using the second order
approximation of the inverse transformation in (4a). can
be used to express the solution for k-th machine state
variable as

hY
XD = )t (v +v2)e™ (13)
i=|

NN
, (hpmd gV
+ Z Z Zg‘?‘k/u;(vpk + V2;1kk )( qu +V 2:;1:/\' )(:' o
p=lg=p
where,
N

Vzl/m = Z Z hzl\l vl/:‘ ip

k=1 [=}
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Using the approach given in [15], one can define
second order participation factors according to

N NN
x/"(l): 21)2/(!87&:’ +Zzp2ﬁpqe(}.ﬁ+kq)’ (14)
i=t

r=lg=p
where,

P2 = (Ve +V2)

pzkpq = uzkpq(vpk + vzpkk )(vqk + vzq&k)

Note that there are two types of second order
participation factors. The p2,; represents the second order
participation of the k-th machine state in the i-th single-
eigenvalue mode. In fact, the linear participation factor,
Py is one term in the expression for p2,; which includes
the second order corrections. The p2,, represents the
second order participation of the k-th machine state in
the 'mode’ formed by the combination of the p and q
modes. This is used in Table 7 in the part I to provide
the participating states at the combination modes which
have strong interactions with the critical modes.

2.3 Sensitivity Analysis

- Eigenvalue Sensitivity

111 the power system (1) the vector field F depends on
the gain constants Ka of the exciters present in the
system, as do all the terms of the Taylor expansion in (2).

Hence the eigenvalues of the system matrix A in (2)
depend on Ka. Using again U, as the i-th column vector.

of the eigenvector matrix U, and V7, as the j-th row
vector of the left eigenvector matrix ¥/, we obtain

BRAGY
0Ka VU,

(15)

as the sensitivity of the i-th eigenvalue with respect to
Ka. '

- Sensitivity of the Normal Form Coefficient

The normal form coefficient in (4¢) provides the
coefticient second order terms in the system. Using
equations (3b) and (4¢) we obtain for its sensitivity with
respect to the exciter gain Ka as follows.

&

N
o2y wa(hp + 0 =) —Culas +

Oy B
oKa — 6&’0)

oKa (b +2,=2,)?
(16)

Both sensitivity quantities will be used in the sequel
to analyze the dependence of the behavior of the critical
modes on varying exciter gain settings.

2.4 Linear Gain Tuning

Linear gain tuning algorithms adhere roughly to the

following procedure: The critical (low frequency
interarea) inertial modes with poor damping are

identified. For the corresponding eigenvalues the

sensitivity with respect to the exciter gains is computed
according to equation (15). The exciter gain is shifted so
that the real part of the critical eigenvalues becomes
more negative. As a measure of the appropriate shift the
linear approximation of the eigenvalues as functions of
the exciter gains is used. The linear approximation can
be computed from the eigenvalue and from (15). A
technique based on the linear analysis of the system
neglects potentially important terms in the system
response, compare {7) and (8). Therefore, it cannot
always predict system behavior correctly {see (5] fore.g.,
analysis of system separation). Furthermore, such a
technique does not always provide the mechanism by
which control settings influence the inertial modes as we
will see below. The choice of the most influential exciter
and of the amount of gain shifting may lead to wrong
settings, when based on linear analysis alone. Finally,
optimal gain values for the linear system and for the
nonlinear system may be different, due to differences in
the linear and the nonlinear response behavior. Therefore
we propose a control tuning technique based on second
order normal forms. This method includes the effect on
the second order terms. The procedure developed is
general and can be extended to include higher order
terms.

2.5 Procedure to Tune Gains

A. Determination of Critical Modes

1. Develop the system equations at the post
disturbance Stable Equilibrium Point (SEP),
conduct the disturbance simulation, perform the
eigenanalysis and the normal forms calculation.

2. Identify the critical inertial modes and the control
modes using the results of the eigenanalysis, and
linear participation factors.

3.Apply the nonlinear interaction index (I1)
developed, and among the critical modes, identify
those with the highest index Ii.

4. For the inertial modes identified by the nonlinear
interaction index li, determine the control modes
with the largest second order interaction. This is
done by determining the magnitude of the second
order interaction coefficient.

5.For the control modes identified, use nonlinear
participation factors and identify the control states
{in our case exciter states), which participate in
these interacting modes.

B. Control Tuning Procedure.

6. Compute the sensitivity ofthe second order
interaction coefficients of the identified inertial
modes with respect to the control states (in our
case exciter states) identified in step 5.

7. For the selected inertial modes and the
corresponding interacting control modes, compute
the linear eigenvalue sensitivity with respect to
the gain of the exciter identified in step 5. If this
sensitivity is positive (negative), adjust the
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corresponding  gain setting to lower (higher)
values to obtain a more stable system. Also verify
from the sensitivity of the second order terms that
the nonlinearity is reduced by the change in
control setting.

8. Among different exciter gain settings that result in
similar stability behavior of the critical inertial
modes, choose the one with lower nonlinearity
index 12 for the critical inertial modes.

3. Conclusions and Discussions

This paper develops the analytical basis for tuning
controls (exciter settings) in power systems using the
nonlinear information provided by the method of normal
forms. The technique developed is based on using
indices developed in previous work [5], to identify
control modes which interact nonlinearly with inertial
modes. The concept of nonlinear participation factors,
and sensitivity of the normal forms coefficient together
with linear participation factors and eigenvalue
sensitivity are used to vary control settings. The control
settings are varied to obtain improved stability and to
reduce the nonlinearity in the system. Detailed results on
tuning the controller settings are provided in a
companion paper [11].
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