PE8 Redox Chemistry of Water-Soluble Cobaltporphyrin and It Catalyzes the Electroreduction of Dioxygen 물에 용해되는 코발트포르피린의 산화환원 화학 및 산소 전극환원에의 응용 전승원, 이효경, 김송미 전남대학교 화학과 Electrochemical reduction and oxidation of water-soluble cobaltporphyrin hydrate [Co(TTFP)(Y)₂ {Y = H₂O or HO⁻}] have been investigated in aqueous solutions as a function of pH. With an increase in pH, the proton dissociation of the ligated water of Co(TTFP)(H₂O)₂ provides Co(TTFP)(OH)(H₂O) and then Co(TTFP)(OH)₂. Co(TTFP)(Y)₂ as a catalyst for the electrocatalytic reduction of dioxygen cvclic is studied using voltammetry. spectroelectrochemistry, hydrodynamic voltammetry at a glassy carbon electrode in aqueous solutions. Electrocatalytic reduction of dioxygen by Co^{II}(TTFP)(Y)₂ establishes a pathway of 2e⁻¹ reduction to form hydrogen peroxide, and then the generated hydrogen peroxide is reduced to water by $Co^{I}(TTFP)(Y)_{2}$ at more negative potential.