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ABSTRACT

The conditional moment closure formulation considering the molecular and
turbulent diffusion is derived. A simplified solution procedure is proposed to reduce
the computational burden due to the increased dimensionality of the conditionally
averaged variables. A conditionally averaged variable is expressed as a linear
weighted average of the two extremes, 'no reaction’ and ’equilibrium’ states. The
modified  elliptic-type conditional moment closure formulation is implemented to
simulate a two dimensional nonpremixed mixing layer reacting flow. Results show
good agreement for the conditional averages of the species concentration in Bilger et
al.

1. INTRODUCTION

The coupling of instantaneous, turbulent scalar fluctuations with nonlinear
Arrhenius kinetical expressions makes it difficult to accurately model and predict the
combustion system by the commonly employed unconditional averaging
approaches[1,2]. A new closure procedure, named the CMC (Conditional Moment
Closure) was proposed by Klimenko and Bilger[3, 4, 5]. This approach does not
assume any local physical picture of the reacting flow but predicts averages
conditional on the mixture fraction. Although it increases the dimensionality of the
problem, it eliminates the major source of nonlinearity resuiting from closure for the
reaction rate term. This method has the advantage of effectively decoupling chemical
Kinetics from the large inhomogeneity of a turbulent flow while preserving the input
from the scalar dissipation. Arbitrarily complex kinetics may be used to obtain
detailed flow and reaction information without substantial increase in computational
cost.

In the original CMC formulation there exists limitation for its practical
applications. The original CMC equation is derived on the basis of high Reynolds
number assumption, which neglects the molecular diffusion effect. The turbulent
diffusivity has also been neglected in the previous studies. There may be some
numerical difficulties to apply the original CMC formulation to multidimensional
elliptic problems because of inconsistence with other governing equations and
stiffness of the kinetic system. In the present work, the rederived CMC equation is
in a conservative form and retains the molecular and turbulent diffusion terms. A



two-dimensional computing code is developed and applied to a simple nonpremixed
turbulent diffusion reacting flow with assumed probability density for the mixture
fraction and the k—e—g turbulence model.

A simplified procedure is proposed here to avoid the problem of increased
dimensionality due to conditioning on the mixture fraction in the CMC method. It is
based on some simplifying assumptions with engineering applications in mind.

2. EQUATION DERIVATION

2.1 Elliptic-type formulation
Consider the conservation equation for the mass fraction of the 7-th species, Y;

obeying Fick’s law of diffusion with variable physical properties.

—a(gty_i) + v (pUY) = V- (pD;VY) + w W

The mixture fraction is defined as,
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where B is any conserved scalar. The subscripts ' O ' and ' F ' denote the oxidizer
and fuel respectively. The mixture fraction obeys the conservation equation,
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with D the properly chosen mean diffusivity dependent on the definition of 2.
For variable property flow, the density weighting, or Favre’'s averaging, technique
is used. There exist following relations,
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where the angular bracket denotes the ensemble average over an ensemble of
realizations and the vertical bar indicates that this average is conditional on the

condition E(;, ) = £&. The symbols, % and y, are the fluctuations from the
density weighted conditional averages of U and Y;.
Following Bilger’s derivation procedure[5],
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Here the CMC equation will be rederived from Eq.(9) with modeling assumptions
listed in the following. By using the continuity equation, the time and advective
terms in Eq.(9) can be rewritten as,

p22 + pTve = L@ + v (T Q (10)
0 4 o T-vy = Loy + v-(oTy (11)
ot © y ot ey, ey

It is assumed that d(eD;)/dé=0 and o&[p(D;—D)]/dé=0 since the product of the

density and diffusivity is nearly constant as a rough approximation. According to
this assumption the third and the sixth term on the right hand side of Eq.(9) can be
changed as,
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Then Eq.(9) becomes,
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Equation (14) is in a conservative form. Taking the expectation of Eq.(14) conditional
on &x,H = 7, and using Eqgs.(4) ~(8) yields,
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where @ is now a function of the nonrandom variable 7, instead of the random
variable &. The molecular diffusion terms of y and & are ignored as negligible in
comparison with the corresponding turbulent diffusion terms,

Vlp,(D — DY)XvEIP] =0

Vo (p,DXvylp) =0
By assuming Vv (8@/d7)=0, we have,

0, D vElpy - v2E ~ g
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This implies that the gradient of @ with respect to 7 is approximately constant
throughout the spatial domain. It is based on the measurement results in the
transverse direction of the mixing layer[6] and the calculation results along the axis
downstream of a jet flow[7].

Although the turbulent fluctuation term, v - <p—17y| 7>, has been argued not to be
of the first order in some simple flows[5], the eddy viscosity concept is employed
with engineering applications in mind in this paper. It has been considered acceptable
in many practical simulations without any conclusive evidence against it yet. The
term including D;{v&- v¢&| > is the conditional scalar dissipation rate to account
for the diffusion effect in the 7 direction. The average scalar dissipation rate may
be related to the mean turbulence parameters such as the turbulent kinetic energy,
the turbulent kinetic energy dissipation rate, the mean mixture fraction and its
variance and the appropriately chosen probability density function[8]. The final form
of the rederived CMC equation is now,

2(0,@ + V- (0, T
(16)

= v-(0,DivQ — <puylp) + a%(p,DK vé-vE| 77>%%) + <wlp

Equation (16) is in a conservative form suitable for general elliptic multi-dimensional
problems. It is flexible for implementation in different solution algorithms, whether
implicit or explicit.

2.2 Simplified approach

Since the conditional average of the i-th species concentration, @, is a function
of 1, % and 7, its numerical solution involves a significant computational load due
to discretization in each coordinate direction. A simplified procedure is proposed here
by assuming the functional relationship that,

ALz, M = (1-0Qu(n + Q) 17

where ¢= (¢, ;). The variable ¢ is the reaction progress variable between ’‘no
reaction’ and ‘equilibrium’ states which respectively correspond to ¢=0 and ¢=1
as shown in Fig. 1. The profile of @ with respect to #» is assumed to be that from
linear interpolation between the two extreme states. The fast chemistry limit simply
corresponds to the case of ¢=1 throughout the domain. By inserting Eq.(17) into
Eq.(16) we get,

[Qu(n) = QDY F5(0s0) + ¥ - (0,T) — v - 0,078
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To obtain a solution for Eq.(18) the mixture fraction » may be put equal to the local
average value at the given timing and location. The variables p, and ﬁ; may also

be given the local average values without the suffix 7. It is shown in Fig.l that
Q,, varies linearly with 7 so that its second derivative is equal to zero. The

second derivative of @, with respect to » may also be neglected for further
simplification since it only has the effect of smoothing the profile of @ near the
-116 -



stoichiometic 7.

The approach here may be easily adapted to a general computational fluid dynamic
solution procedure. The transport equations for the average and fluctuation of the
mixture faction are usually solved in connection with the mass, momentum and
energy conservation equations. The above Eq.(18) for the reaction progress variable,
¢, may be solved simultaneously with the other transport equations. Care needs to
taken to avoid a null solution for ¢ at »=0 and »=1 in Eq.(18). For one step
irreversible nonpremixed reacting flow, the equilibrium and the frozen limit values are
simply the function of the local mixture fraction and can be readily obtained. Note
that all the scalar variables such as the temperature and the species concentration
may be given in terms of » and ¢ as the weighted average by the assumed
probability density function for 7. Once we get the solution for ¢, it may be
inserted into Eq.(17) to get the conditional average, Q.

The simplified approach here is more realistic than the concept of Imperfectly
Stirred Reactor(ISR)[9] in the sense that it may consider both the temporal and the
spatial variation of the conditional average @. The ISR assumes homogeneous
with no variation in space, which may only be valid in a strongly recirculating
well-mixed device. Implementation of the simplified approach introduced here is now
under way and the results will be reported later.

To consider the fluctuation in ¢ the doubly conditional moment closure formulation
should be employed instead of the singly conditional moment closure, Eq.(9). It is
straightforward to extend Eq.(18) to the doubly conditional moment closure
formulation in terms of 7 and ¢ if an appropriate transport equation for the
fluctuation in ¢ is taken into account with its effect on the mean reaction rate. The
underlying assumption for the singly conditional moment closure is that the effect of
turbulence is primarily due to the fluctuation in 7, while the fluctuation in ¢ has a
negligible effect on the mean reaction rate.

3. MODELING AND CALCULATION OF TWO-DIMENSIONAL TURBULENT
MIXING LAYER COMBUSTION

In the present work, the newly derived CMC equation is implemented to simulate
the NO—O; reaction system for validation and comparison against available
experimental data. The working section is 8 m in length with a diameter of 2.8 m
separated by a splitter plate to form two streams, which are doped with NO and 04

gases respectivelyl6]. Because of the low inlet reactants concentrations and low
reaction heat release, this reaction is taken as passive. The mixing characteristics
will not be dependent on the concentrations and whether reaction is occurring or not.
For two-dimensional planar, turbulent and steady state gas flow, the governing
equation for the conditional averaged @ of the species Y; is given from Eq.(16) as,

a J
(KU I Q + (X VIPQ
0x 9y (19)

_ a 209 9 09 R . 2Q
= ax(th,,- 8x) + ay(po ay)+ a”[pDKVS vElp aq} + wlp

where D, ; is the turbulent diffusivity which includes the turbulent transport, u y.
The conditional averages of <U |7, (V|7 and D;{vé-vE| > are replaced by
the unconditional averages U, V and vé&- vE&. Turbulent shear stress is calculated

by the k—e two equation turbulence model. The mean scalar dissipation x is given,
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by the equality of velocity and scalar integral length scales, as,
X = Di{VE-VE| D = cyeglk (20)

where % is the mean turbulent kinetic energy, & the turbulent energy dissipation
rate, g the scalar variance or mean square fluctuation of £. ¢, is an empirical

constant taken to be equal to 2.0. Note that the convective term in 7 direction does
not appear due to little differential diffusion in NO— O, reaction system.
It is assumed that the reaction is irreversible as,

with the reaction rate w given as,
w = ky Yno Yo, (21)
where k, is the reaction rate constant,
ky = 0.37x(1+0.01 x (7—293.15)) (pp.m.”'s™) (22)

with 7T the fluid temperature in Kelvin.

The calculation domain is discretized in 56X 31 rectangular grids. In 7 space the
grid spacing is dense near zero, unity and &, and sparse elsewhere. The number
of grids is chosen as 41, 51 in # direction, respectively, according to the &,
values. &, is the stoichiometric mixture fraction which is dependent on the inlet
reactants and concentrations as,

Epie = 0 - (Yf — Yax/Est)O
store (Yf - ax/ést)F - (Yf— ax/ést)o

(23)

where Y, and Y, are inlet fuel and oxidizer concentrations respectively, &, is the

stoichiometric coefficient for the overall reaction.

The flow field is taken as two-dimensional with free flow and adiabatic boundary.
The conditional mean profiles are unknown at the nozzle exit plane (x=0), with
only the bounding mixture fraction (7=0,1) being present, and are to be assumed
for calculations. It is known that the form of the starting profiles appears to have no
significant influence on calculated results. Then, the boundary treatment for the CMC
equation is as following[7],

05 7< &uic: QD = A-—F—)io + —F— Yy (24)
Ewic < 1< 1: Q) = —1:”_ Yip + 77%55% Yir (25)
1 Esmic 1 Estaic
for chemical species 7 = 1, ..., N at x = (, i.e. at the nozzle exit plane, with
Y, the pilot mass fraction defined as,
Yin = 7%, ol (26)

Myal
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where m; 4, the mass flux of the species 7, and m,, the total mass flux at the

nozzle exit plane. The spatial boundary conditions for the CMC equation are given
below,

Qx| y=0 = Yio(x)
Q%) | g1 x',F(x)

(27

From above boundary treatment, the solution procedure for CMC formulation becomes
a series of premixed reacting flow computations along 7 direction.

All the elliptic partial differential equations with the boundary conditions are
integrated over the control volumes to obtain numerical solutions. The velocity,
pressure and other dependent variables are stored in staggered positions on the
finitely discretized grids. The SIMPLE algorithm is used to solve the equations.
Because all the governing equations including the CMC equation are solved implicitly,
the stiffness of the conditionally averaged species equations will not be a serious
problem with the calculations numerically more stable.

There are several ways to calculate the pdf, such as the clipped Gaussian, Beta
function, etc. with varying degrees of success. The conventional Beta function pdf is
used here for its relative simplicity and flexibility in nonpremixed reacting flows. The
Beta function pdf P(&) for the mixture fraction & has the form,

P& = £7'1 — 871/Ba, b (28)
with
a=FlfrQ - Nlg — 1]

b=a(l - NIf (29)

Bah) = [ &0-0""d

where f is the mean value and g is the mean square fluctuation of £. With the
use of Beta function pdf, conditional mean variables ¢(7) are weighted to provide the
unconditional mean variables ¢ needed in the flow and mixing calculation,

— 1
9 = fo o(n) P(n)dy (30)

4. RESULTS AND DISCUSSION

Figure 2 shows the calculated mean mixture fraction and its r.m.s. fluctuation f’
profiles at x/M=16 and 21 for the given experimental conditions. M is equal to 0.32m
and & is the width of the mixing layer defined as the distance between the points
where 7=0.1 and f=0.9. Note that there is not much scatter in calculation results for
different Damkohler numbers, which is consistent with the experimental results and
represents the passive reacting flow.

Figures 3 shows the results for the mass density averaged scalar @, normalized

by the corresponding inlet species concentration. For finite Damkohler number N,

the mean species concentration curves lie between the frozen and equilibrium limits
and higher N, will lead to mean concentration to be closer to the equilibrium values.

Figure 4 gives the relationship between @, and Quo, which shows that the
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increase of Np makes the curve tend to the left bottom corner. The measured joint
pdf for the species concentrations[6] is close the curves in Fig. 4 with some scatter
about the mean value. Figure 5 shows mean reaction rate w. From above results, it
is known that the present predictions are in good agreement with measurements.
Figure 6 and 7 show the normalized conditional averaged scalar @; and reaction
rate w profiles with respect to 7. The solid curve represents the case with
Damkohler number N, of 1.81, and the dashed curve with the N, of 0.30. It can be

inferred that a larger N, results in a higher reaction rate and the maximum value
occurs near the &g.

In Fig. 8(a), the conditional averaged scalars are given at different transverse
locations. It demonstrates some deviation between the curves, This effect becomes
larger near &, which implies that the reduction of spatial dimensionality might
involve some error even for this simple case. Note from Fig. 8 that, although the
term 0Q,/dn varies remarkably respect to 7, its derivatives to spatial coordinate x,

or y, could be taken as negligible because there is not much scatter from the
numerical  results. This result numerically validates the assumption,

ODIVEID- Q2 =~ 0.

5. CONCLUDING REMARKS

(1) By taking into account the molecular and turbulent diffusion effects, the
modified elliptic type CMC formulation is derived.

(2) A simplified solution procedure is proposed to reduce the computational burden
due to the increased dimensionality of the conditionally averaged variables. Its
implementation is under way.

(3) The modified CMC formulation is implemented to simulate a nonpremixed
mixing layer. The calculated results show good agreement with measurements.

(4) The reduction of dimensionality and ignorance of diffusion terms will involve
errors because the diffusion effect may be important in general problems.

(5) It is suggested that the CMC formulation considering molecular and turbulent
diffusion effects be used in general elliptic problems.
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