REACTION OF GAS PHASE Fe ATOMS WITH O2 AND N2O

Ja Kang Ku and Kun-tack Lee

Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784

Reaction of gas phase Fe atoms with O_2 and N_2O have been investigated. The gas phase Fe atoms were generated by multiphoton dissociation of Fe(CO)₅ using an unfocused UV laser beam and the formation of FeO molecules as a reaction product was identified by a laser-induced fluorescence method. It has been found that the laser-induced fluorescence signal from FeO molecules is stronger in O_2 than in N_2O implying that O_2 is more reactive even though the bond energy of O_2 is much larger than that of N_2O . The radiative lifetime for the 591.1 nm band of the FeO Orange system was found to be 260 ± 20 ns, and the quenching rate constants for this band were $4.3 \pm 0.3 \times 10^{-10}$ in O_2 and $5.4 \pm 0.2 \times 10^{-10}$ cm³molecule⁻¹s⁻¹ in N_2O . It is also found that the ground state FeO molecules are quite reactive with O_2 and N_2O , and the depletion rate constants for the ground state FeO were $1.7 \pm 0.2 \times 10^{-12}$ in O_2 and $5.6 \pm 0.2 \times 10^{-12}$ cm³molecule⁻¹s⁻¹ in N_2O , respectively. The depletion behavior of the ground state FeO was found to be different from that of the ground state Fe(a⁵D) atoms suggesting that the FeO molecules are generated from the excited state Fe atoms.