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Abstract

Bayesian MAP-EM approaches have been quite
useful for tomographic reconstruction in that they
can stabilize the instability of well-known ML-EM
approaches, and can incorporate a priori information
on the underlying emission object. However, MAP
reconstruction algorithms with expressive priors
often suffer from the optimization problem when
their objective functions are nonquadratic. In our
previous work [1], we showed that the use of
deterministic annealing method greatly reduces
computational burden for optimization and provides
a good solution for nonquadratic objective functions.
Here, we further investigate the convergence of the
deterministic annealing algorithm; our experimental
results show that, while the solutions obtained by
a simple quenching algorithm depend on the initial
conditions, the estimates converged via deterministic
annealing algorithm are consistent under various initial
conditions.

I. INTRODUCTION

In emission computed tomography (ECT), a
dominant source of image degradation is the noise
due to variation in the number of photons emitted
from a radionuclide. In addition, the three most
significant physical factors that contribute to the image
degradation are attenuation, scatter, and detector
response.  Well-known maximum likelihood (ML)
approaches using the expectation maximization
(EM) algorithm are attractive in that it can naturally
express accurate system models of physical effects,
and can accurately model the statistical character of
the data. Unfortunately, however, these approaches
are known to be unstable for the noise levels and
numbers of measurements that characterize ECT. In
contrast, maximum a posteriori (MAP) approaches
in the context of a Bayesian framework overcome
this instability by incorporating prior information
while retaining the above advantages of ML-EM
approaches. In this case, prior information typically
takes the form of constraints on the local spatial
structure of the underlying emission object. Over
the last decade, a host of different formulations
for priors have been proposed in the literature
[2, 3, 4, 5, 6, 7); some of these implicitly model
the underlying radionuclide density as globally
smooth, and others extend the smoothness model by

allowing for spatial discontinuities.  Discontinuity
preservation is associated with a smoothing penalty
that is a nonquadratic function [8, 9, 1] of nearby pixel
differences, whereas conventional (e.g. membrane)
smoothing priors use quadratic penalties. The
nonquadratic priors can exhibit good performance, but
suffer difficulties in optimization.

Our previous work [1] showed that the use of
deterministic annealing algorithm can greatly reduce
the computational burden for optimization and provide
a good solution for nonquadratic objective functions.
In this work we further investigate the deterministic
annealing algorithm applied to our tomographic
reconstruction problem, and test the reliability of the
algorithm in terms of its convergence to one solution
under various conditions.

11. BAYESIAN RECONSTRUCTION MODELS
WITH NONQUADRATIC PRIORS

Geman and Geman [8] introduced the powerful
idea of including unobservable “line processes” in
the image model in order to preserve discontinuities
in the image. Versions of the line processes have
been proposed for medical imaging [4, 10, 5]. The
line processes are binary variables (0 or 1) that act
to suspend smoothness constraints at sites where
they are turned on (! = 1). A horizontal line process
at location (i,7), lffj = 1, indicates a horizontal
edge (discontinuity between pixels along the vertical
direction) and a vertical line process, lfyj =1, indicates
a vertical edge (discontinuity along the horizontal
direction).

The Bayesian approach combines the likelihood and
the prior to yield a posteriori probability via Bayes’
Theorem. Since the priors include the unobservable
binary variables 1, which represent the information
regarding discontinuities, we start by formulating our
reconstruction problem from Bayes’ Theorem with the
aid of the line processes:

PrF=fL=1G=g)=
Pr(G=g|F=f L=1)Pr(F=f,L=1)
Pr(G=g) )

where f, 1, and g are the source intensities, line
processes, and projection data, respectively, and
F, L, G are the associated 2-D random fields. The
term Pr(F = f,L. = 1) is the prior probability for
the fields F and L, Pr(G = g|F = f,L = I) the
likelihood, and Pr(G = g) a constant. One possible
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approach is then to estimate both the source field and
the discontinuity field simultaneously by maximizing
the a posteriori probability distribution, the MAP
estimate (£, 1):

1 = argr(r}achr(F =f,L=1G=g)

argr(xflilr)l [~ logPr(G =g|F =f)
—logPr(F =f,L=1)],

where the penultimate equality derives from the fact
that G is independent of L.

We model both the likelihood and prior as Gibbs
distributions with energy function E and the partition
function Z (a suitable normalization):

Pr(Y = y[X = x) = Zrsep(-EG), ()
where E is the associated Gibbs prior energy function,
and Z is a normalization of no concern here. Since the
partition function is a normalization over all possible
configurations of Y and not of X, it is usually a
function of x.

Since the number of detected counts is
independently Poisson distributed, the likelihood is
modeled as independent Poisson processes:

95 exp(—0e.0)

gt 0! ¥ (2)

Pr(G=glF =f) =]
t,0

where gy ¢ def Zi,j Hi,6,4,5fi,5- In Equation (2), gs0
is the number of detected counts in the detector bin
indexed by t at angle 8, g; ¢ is the expected number
of counts for a particular source f, and H; p.; ; is the
probability that a photon emitted from source location
(2, 7) hits detector bin ¢ at angle 6. In this case, the
likelihood energy Ep is given by

Ep(f) =) [~g1610g (:.0) + 10g(g:.0")] + D _ G-
t,0 t,0
3

The nonquadratic prior energies derived from
mechanical analogs [11, 1] are given by

BY(E) =AY [£26,5)1 = 15) + fili, N = 1))]
+a Y (Il +15) )
i

for weak membrane (WM), and

Ef(E) =

AT {[F00 6 0) + 23,6, 3) + Fin(6,5)] (1= 1) }
+a Zi,j li %)

for weak plate (WP). In (4) and (5), the positive
parameter A weights the stabilizer respect to Ep(f). It
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is shown [1, 9] that the line processes can be expressed
implicitly in the “broken parabola” function, and the
problem in this case is reduced to a minimization over
the source intensities f only. However, the reduced
energy functions are still nonqudratic.

From (3), (4), and (5), the MAP estimates become
the minimization of the following overall energy
functions:

EM(f1) =
EP(f1) =

Ep(f) + EM(£,1)
Ep(f) + EE(£,1)

where E¥ and EM are overall energy functions for
WP and WM, respectively. The above overall energy
functions that involve the nonquadratic prior terms
(El; and Eg) are clearly non-convex, and may have
numerous stable states.

III. MINIMIZING ENERGY FUNCTIONS

In general, energy functions with weak continuity
constraints may have many local minima, many of
which are not global; any intermediate state between
two successive stable states is higher than either of the
stable states. Since gradient-based descent methods
search for the minimum of a function by successively
adjusting the arguments of the function until it can
not be reduced any further, they may stick at a local
minimum with the higher energy state than the global
minimum.

To overcome the problem of local minima, an
optimization method that has an ability to “jump
out” of a local minimum is necessary. Kirkpatrick,
et al. [12] proposed a method, called simulated
annealing, in order to optimize non-convex functionals.
The simulated annealing method is based on an
algorithm invented by Metropolis [13] that simulates
thermodynamics, specifically the way that liquids
freeze and crystallize, or metals cool and anneal. At
high temperatures, the molecules of a liquid metal
move freely with respect to one another. If the liquid
metal is cooled quickly or “quenched”, it does not
reach the minimum energy state but rather ends up in
amorphous state having somewhat higher energy. On
the other hand, if it is cooled slowly so that the atoms
can be redistributed as they lose mobility, nature is able
to find the minimum energy state. One difficulty in the
simulated annealing method is that it might take very
long to attain thermal equilibrium at low temperatures.

An alternative approach is to use a ‘“‘continuation
method” [1, 9, 14]. In this case the energy function
is approached by a sequence of energy functions
indexed by a parameter 3. The sequence is obtained
by transformation of the probability distributions in
Equation (1) to

Pra(Y = y[X = x) =

1
T3 P IE))
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where Z(x; ) is the partition function parametrized
by B. As [3 approaches infinity, this new distribution
becomes a highly peaked version of the distribution in
Equation (1). As far as MAP estimation is concerned,
the location of the maximum is unchanged. A
sequence of energy functions is constructed which
more closely approximates the original energy function
as a control parameter (3 is increased. This technique
is called deterministic annealing. The parameter § in
deterministic annealing may be identified as the inverse
of a computational temperature used in conventional
simulated annealing approaches. At each temperature,
a standard descent optimization algorithm is used to
find a solution which is then used as an initial condition
for the next temperature setting. The energy functions
at high temperatures are smooth approximations to the
energy functions at low temperatures. The extensive
derivations of deterministic annealing for both WM
and WP can be found in [1].

IV. SIMULATIONS AND RESULTS

It has been shown [9] that there exist local
minima in the broken parabola objective function
by comparing the images reconstructed by different
annealing schedules (i.e., “quenching” versus DA). In
[9], quenching was performed by executing the DA
algorithm at a single, very high value of 3. The results
showed that reconstructions obtained with quenching
yielded inferior quality. However, we note here that, in
order to validate the convergence of the solution to a
minimum, it is necessary to show that reconstructions
are independent of initial estimates. In other words,
different initial estimates should result in the same final
reconstruction.

To test the above idea, we used a 64 x 64 piecewise
constant phantom shown in Figure 1(a). For projection
data, we used 64 projection angles over 360° with 96
detector bins at each projection. The total number
of detector counts was approximately 800K with
attenuation. To simplify the problem, we considered
attenuation only. For initial estimates, we used three
widely different estimates shown in Figure 2: a
constant image (denoted A) with 100 for the pixel
intensity, a checkerboard image (denoted B) with 1 and
100 for the pixel intensities, and a noise image (denoted
C) with the pixel intensities uniformly distributed in
[1,255]. Note that the range of grey levels used for the
initial estimates is relatively large compared to that for
the phantom whose highest intensity is 15.

We tested two different annealing schedules, DA
and quenching, and used the same hyperparameter
settings (A = 1.0 and a = 0.5) for both algorithms. In
DA algorithm, the initial value for the parameter 3 was
chosen to be small (§ = 0.001) enough to yield very
smooth initial reconstructions [9] for various initial
estimates. Iterations at a given 3 was terminated when

the relative energy change was negligible, and the
entire simulation was terminated when the sequence of
energy functions reach the broken parabola. With these
criteria, there were approximately 5 to 25 iterations
per each 3, and the annealing schedule ran through 16
values with a doubling at each new value of 3. The
total number of iterations in this case was around 220.
For the quenching algorithm, we set 8 = 16.3840,
which was the same as the final value of 8 for the
DA algorithm. The average number of iterations for
quenching was around 250.

Figure 1(b) shows root mean squared error (RMSE)
curves for both DA and quenching with three different
initial estimates. The RMSE here was measured for
the entire image. It is clearly shown that the RMSE’s
for the DA algorithm started from different initial
estimates converge to the same value, but those for
the quenching algorithm converge to the different
values depending on the initial estimates. In addition,
the average RMSE for quenching is much larger
than that for DA. Notice that, after 50 iterations,
while the DA algorithm yields very similar quality
of reconstructions in terms of RMSE, the quenching
algorithm produces irregular quality through the
entire simulation depending on the initial estimates,
Figure 2 shows reconstructions at various iterations. In
general, while the DA algorithm produces consistent
reconstructions after a certain number of iterations
(60 to 70 iterations in this simulation) regardless of
the initial estimates, the quenching algorithm yields
different reconstructions at each iteration depending on
the initial estimates.

V. CONCLUSION

We have tested the convergence of MAP-EM
reconstruction algorithms with nonquadratic smoothing
priors. Our simulation results show that, while the
solutions obtained by the simple quenching algorithm
depend on the initial conditions, the estimates
converged via deterministic annealing algorithm
are consistent under the various initial conditions
considered in the experiments. In addition, the results
from quenching show anecdotally that there exist local
minima in the broken parabola objective function. It is
a difficult problem to prove mathematically whether
the DA minimum is global. This could be tested
experimentally by comparing the DA results with those
obtained by simulated annealing.
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