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INTRODUCTION

Recently, since one of the most important societal problems facing us today is the growing
incidence of the contamination of coastal sea from variety of sources, several distinct
numerical improvements have been made and applying the transport models to
flow-dominated transport area. Application of Eulerian numerical models to the solution of
sharp-front problems often results in oscillations, phase errors, peak depression, and/or
numerical dispersion, unless very fine temporal and spatial steps are adopted. The
representative Eulerian scheme is Quadratic Upstream Interpolation for Convective Kinematic
with Estimated Streaming Terms (QUICKEST) scheme first presented by Leonard (1979). As
the second generation, the mixing Eulerian-Lagrangian method has been proven to provide
high accuracy with reduction of oscillations and numerical dispersion. However, its accuracy
depends on interpolating algorithm used. This type of method uses a split operator approach
in which the advection term is treated by a Lagrangian approach along characteristic paths
and the other diffusion term is solvd on Eulerian grids. The Lagrangian approach to advection
usually takes either Forward Particle Tracking Method (FPTM) (Garder et al, 1964; Dimou
and Adams, 1991) or a single-step Reverse Particle Tracking Method (RPTM) (Holly and
Preissmann, 1977, Jun and Lee, 1994; Seo and Kim, 1995): The RPTM method requires the
interpolation to evaluate the unknown value between grid points by using the known values
of surrounding grid points; and the FPTM requires the four consecutive steps which are
somewhat complicated; tracking the concentration front, single-step forward tracking,
single-step reverse tracking and finite difference/element approximation.

In this study a new hybrid method is developed for solving flow-dominated transport
problems accurately and effectively. The method takes a Lagrangian viewpoint for advection
step, introducing moving particles to track their assigned concentration continuously forward.
At each time, the concentration of particles is re-assigned through the diffusion step and a
new particle is set up at the center of each grid where the concentration is newly diffused. If
there is no diffusion effect, the conventional Lagrangian random-walk model requires the
numerical implementation of a small number of particles so that it becomes quite economic
and effective. However, with diffusion effect, the method requires a large enough number of
particles to” simulate the diffusion process by random walk (Lee, 1994; Lee and Wang, 1994).
That makes the Lagrangian method quite time-consuming and labourous. Therefore, the
present method solves the diffusion step on a fixed Eulerian grid but particles move
continously forward. It is assumed in the diffusion step as if each particle poses at a cell
center. Differently from the FPTM which requires the four consecutive steps, the present
method requires only the two steps; forward tracking for advection and finite difference
approximation for diffusion.
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FORMULATION

The partial differential equation describing advection and dispersion in two dimensions is
written in conservation form as
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where, K 1is the dispersion coefficients and (#,v) are the x,y components of
depth-averaged velocity vector. The advection-dispersion equation is solved using
split-operator approach which is based on the recognition that the physical phenomena of
pollutant transport are represented by superimposing two individual operations, advection and
diffusion. Therefore, Eq. (1) can be decoupled into the two elementary operations and solved
separately and alternately for each small time increment.

SOLUTION STRATEGY

A new hybrid method proposed here is useful for flow-dominated transport problems. This
method takes the switching approach between advection and diffusion prosesses, keeping the
concentration particles continuously moving forward rather than a sigle-reverse particle
tracking. In this procedure, a big assumption is involved that the variation of concentration
within a grid cell is negligible in estimating diffusive effect as similar as the basic concept of
finite descrete schemes. However, the results are quite satisfactory since the assumption is
adopted in the diffusive process which works the values for smoothing. The following is the
computing procedure of this approach :

1) Move particles forward according to pure advection

2) Find the grid mesh where each particle poses

3) Assign the concentration of particle at the grid center

4) Do diffusion step by using Implicit FDM

5) Re-assign the values to corresponding particles

6) Set up a new particle at the node where concentration is newly diffused.

Without diffusion, step 1 is only required and without advection, step 4 is only required.

NUMERICAL EXAMPLES

The numerical model is tested for an instantaneously loaded contaminant under a uniform
flow, The one-dimensional analytic solution of Eq. (1) is given by
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A point source of M=3,000kg/ m? having a deviation of zero is initially given and
transported downward for a time of 12,800sec by a uniform current of 0.5m/s. The node
spacing and time step chosen are 50m and 100sec, respectively. Figures 1 and 2 show the
numerical solutions by the present method is very close to the analytic solution.

The present method is easily applied to two dimensions. The two—dimensional analytic
solution is given by
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The initial profile has a point source of M=1,000,000kg/ m? and is transported in the x
direction for 20,000sec by a uniform current of 0.lm/s. The node spacing and time step
chosen are 100m and 100sec, respectively. The computational times required by the various
schemes for 2D example are shown on Table 1 in which the values indicate ratios of
computational times to the present method (2 m%/s). The computational effort required by
five-point Hermite polynomial method is more than four times than that required by the
present method. The ratio for random-walk method is resulted from 100,000 particles released
into flow fields. Figures 3, 4 and 5 show the results by the five-point method, random-walk
method (100,000 particles) and the present method, respectively. It can be seen from Fig. 5
the present method is very consistent with analytical solutions.

Table 1. Coparison of computational time

ethod Types| _ .
K ( m? /9 Five-point method Present method Random walk method
2 44 1 51
10 75 1.05 5.1
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Fig. 1. Comparison between analytic solutions and results by the present study
( K= 2 m?s, and (a) t=3200sec, (b) t=12800sec)

112



(a) (b)

n Nusmerical 2gin, o : x&

4
—-en- AR HER,
as

ez

X

SR " FAN

Fig. 2. Comparison between analytic solutions and results by the present study
( K= 10 m?%/s, and (a) t=3200sec, (b) t=12800sec)
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Fig. 3. Comparison between analytic solutions (lower) and results by five-point Hermite
polynomial method (upper) ( t=20000sec, and (a) K= 2 m%/s (b) K= 10 m?/s)
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Fig. 4. Comparison between analytic solutions (Jower) and results by the random walk
method (upper) ( t=20000sec, and (a) K= 2 m?%/s (b) K= 10 m¥/s)
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Fig. 5. Comparison between analytic solutions (lower) and results by the present
method (upper) ( t=20000sec, and (a) K= 2 m?/s (b) K= 10 m ?¥/s)

CONCLUSION

The hybrid method proposed here requires only the two steps without need to use the
interpolation; forward tracking for advection and finite difference approximation for diffusion.
The present method has a high accuracy and fast computation compared with other schemes
such as five-point Hermite polynomial method and random-walk Lagrangian method. Based
on the results, it is concluded that the present method is easily applied to various
flow-dominated fields and very effective in calculating advectiive diffusion not only in
one-dimensional cases but also in two-dimensional ones. For the initial point source, the
results show the present method works very well.

REFERENCES

Dimou, K.N. and Adams, EE, 1991. Representation of sources in a 3-D FEulerian-Lagrangian
mass transport model, in Water Pollution: Modelling, Measuring and Prediction (Ed.
Wrobel, L.C. and Brebbia, C.A.), Proceedings of the 1st Int. Conf. on Water Pollution,
Southampton, England, Elsevier, New York.

Garder, A.O., Peaceman, D.W,, and Pozzi, A L., 1964. Numerical calculation of multidimensional
miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4, 26-36.

Holly, F.M. and Preissmann, A., 1977. Accurate calculation of transport in two dimensions, J.
Hyd. Div., ASCE, 103, 1259-1277.

Jun, KS. and Lee, KS. 1994. An Eulerian-Lagrangian hybrid numerical method for the
longitudinal dispersion equation, J. KAHS, 26(3).

Lee, JL., 1994. Boundary flow under a shiice gate, J. KAHS, 27(3).

Lee, JL., and Wang, H, 1994. One-D model prediction of pollutant transport at a canal

114



network, J. KSCOE, 6(1).

Leonard, B.P.,, 1979. A stable and accurate convective modelling procedure based on quadratic
upstream interpolation, Computer Method in Applied Mechanics and Engineering, 19, 59-98.

Seo, LW. and Kim, D.G., 1995. Numerical modeling of one-dimensional longitudinal dispersion
equation using Eulerian-Lagrangian method, J KAHS, 27(2).

115



