a₁-Adrenergic Effects on Intracellular Ca²⁺, Contraction and L-type Ca²⁺ Current in Guinea Pig Ventricular Myocytes: Role of Protein Kinase C Sun Hee Woo* and Chin Ok Lee Dept. of Life Science, Pohang Univ. of Sci. and Tech., Pohang, Korea. The effects of a_1 -adrenoceptor stimulation on intracellular Ca^{2^+} ($[Ca^{2^+}]_i$) transient, contraction, and L-type Ca^{2^+} current ($I_{Ca,L}$) were studied in single cells isolated from ventricles of guinea pig hearts. Phenylephrine, a_1 -adrenergic agonist, $(5\times10^{-5}\sim10^{-4}~{\rm M})$ produced a biphasic pattern of inotropism: transient negative response (decrease in contraction by 23.9 \pm 2.5 % of control) followed by a sustained positive response (increase in contraction by 60.0 \pm 3.4 %, mean \pm SD, n=12). $[Ca^{2^+}]_i$ transient was decreased by 10.6 \pm 2.1 % during the negative phase, while it was increased by 68.6 \pm 9.5 % (n=12) during the positive phase. These effects were inhibited by prazosin ($10^{-6}~{\rm M}$), a_1 -adrenergic antagonist. Phenylephrine increased $I_{Ca,L}$ from 0.82 \pm 0.04 to 1.31 \pm 0.30 nA (by 60.8 \pm 21 %, n=5). To determine whether activation of protein kinase C (PKC) is responsible for the modulation of $[Ca^{2+}]_i$ transient, contraction, and $I_{Ca,L}$ during \mathfrak{a}_1 -adrenoceptor stimulation, we tested effects of $\mathfrak{4}\beta$ -phorbol 12-myristate 13-acetate (PMA), a PKC activator, and GF109203X or staurosporine, PKC inhibitors. PMA mimicked phenylephrine effects on $[Ca^{2+}]_i$ transient, contraction and $I_{Ca,L}$. PMA ($\mathfrak{10}^{-7}$ M) produced decreases of $[Ca^{2+}]_i$ transient and contraction by 19.8 \pm 0.8 % and 26.9 \pm 5.3 %, respectively, which were followed by prolonged increases of $[Ca^{2+}]_i$ transient and contraction by 133 \pm 8.8 % and 139 \pm 21 % (n=8), respectively. PMA ($\mathfrak{10}^{-7}$ M) also increased $I_{Ca,L}$ from 0.77 \pm 0.04 to 1.37 \pm 0.32 nA (by 81.1 \pm 53 %, n=5). Prior exposures to GF109203X ($\mathfrak{10}^{-6}$ M) or staurosporine ($\mathfrak{10}^{-8}$ M) prevented the phenylephrine effects on $[Ca^{2+}]_i$ transient, contraction, and $I_{Ca,L}$. Our study suggests that, during \mathfrak{a}_1 -adrenoceptor stimulation, increase of $I_{Ca,L}$ by PKC causes an increase in $[Ca^{2+}]_i$ transient and thereby contractile force in ventricular myocytes.