BM-3

Two Types of Vanadate-sensitive Microsomal ATPases in Tracheal Epithelial Cells

Jung Sakong* and Young-Kee Kim Department of Agricultural Chemistry, Chungbuk National University.

The physiological activity of tracheal epithelial cells is closely the ionic conditions of cytosol, related with specially concentration of cytosolic Ca²⁺. We have prepared microsomes in these cells and the molecular mechanisms of ionic regulations were investigated. More than 40% of microsomal ATPase activity was mediated by the intracellular Ca²⁺-ATPase, a thapsigargin-sensitive Ca²⁺ pump, while the major part of microsomal ATPase activity remained unknown. Although microsomal ATPases were inhibited by both vanadate and nitrate, only vanadate blocked whole activity of microsomal ATPase. In dose-response, vanadate inhibited completely the activity of microsomal ATPase at 5 mM. Interestingly, the activity was gradually decreased with vanadate at below 100 µM; however, the activity drastically dropped to zero at above 100 µM vanadate. The dose-response curve was fitted to a function of two components by multiful gaussian with K_I values of 1 μ M and \sim 2 Thapsigargin only blocks vanadate. the low affinity vanadate-sensitive ATPase and the high affinity vanadate-sensitive ATPase was independent of thapsigargin at whole range of concentration. These results suggest that there are a high affinity and a low affinity vanadate-sensitive ATPases and the low affinity vanadate-sensitive enzyme seems to be the ER-type intracellular Ca²⁺-ATPase.