‘97 International Conference Multimedia Databases on Internet
October 10, 1997, Seoul Korea

Performance Analysis for Maintaining Distributed Views

Wookey Lee
Department of Computer Engineering,
Sungkyul University, Anyang, Korea., 430-742
wook@hana.sungkyul.ac.kr

abstract
Maintaining materialized views and/or replica can basically be considered as a client-server
architecture that extracts the changes of the distributed source data and transfers them to the
relevant target sites. View maintenance and materialized views are considered to be important
Jfor suggesting solutions to the problems such as a decision support, active databases, a data
warehouse, temporal databases, internet applications, etc. In this paper an analysis is
addressed that formulates the cost functions and evaluates them as the propagation subjects,
objects, and update policies. The propagation subject can be the client side, server side, and
the third, and the objects can be base tables, semi-base tables, and delta files; And the

update policies can be the immediate, deferred, and periodic ones, respectively.

1. Introduction

Maintaining materialized views and/or replica can be analyzed as a client-server architecture
that extracts the changes of the distributed source data and transfers them to the relevant
target sites. View maintenance and materialized views are considered to be important for
suggesting solutions to the problems such as a decision support [TGH95], active databases
[MZ97], a data warehouse [LG96, ZG+95], temporal databases [OS95], mobile computings
[WSD95], concurrent engineering with cooperative works [GL96], internet applications, etc.
[RO91].

In this paper an analysis is addressed that formulates the cost functions and evaluates
them according to the propagation subjects, objects, and update policies. At first, the
propagation subject can be the client side, server side, and the third. (1)Server side: the
changes are detected and delivered in the server side. It is called as a push type method.
(2)Client side: The changes and processes are made by client's requests. It is called as a pull

type method. (3)The third: All the processes are performed by the other side such as a rule

—515-

trigger, and is called as a hybrid method. R.Goldring discussed that data replicators described
above adopt push and pull type data propagation techniques respectively [GO94).

The extracted and/or the transferred objects that can be classified as three ways such as
the base tables themselves, the indices that we call them 'semi-base tables', and the delta files
that denotes the changed portions of the relevant base tables as follows: (1)Base tables: The
view definitions are re-executed every time. (2)Semi base tables: The indices of tables are
gathered and are sent incrementally. (3)Delta files: The delta files or called differential files
are delivered differentially. W.Lee et. al. in [LPS96] and [LP98] showed that 'the differential
file scheme' is superior to base table or semi-base table scheme in normal situations such as
about less than 0.5 screening, under 1Mbps communication speed, and when the differential
file size is less than that of base table.

Three view maintenance policies have been suggested: (1)Immediate updates: The view is
updated immediately that the transactions include the view maintenance operations. (2)deferred
updates: The view is updated by the view invoke transaction that is separate from the update
transactions. (3)Periodic updates: The view is updated periodically such as every 5 minutes, or
a day, or bimonthly, etc. [CK+97] suggested several algorithms for multiple view maintenance
and compared a number of view maintenance policies. In this paper an analysis is addressed
that formulates the cost functions and evaluates them according to the three criteria and

policies.

2. A View Maintenance Architecture

We assume here that the subject that who has the update initiative is the place where the
tables are stored. The server side update means that all the tables and/or the related
projection and join operations are made in the server site whereas the client makes the
request queries and gets the results. The client side update means that all the tables are
replicated in the client site, whereas they are updated synchronously as in the data replicators
such as Data Distributor (DEC), Data Propagator Relational (IBM), Replication Server
(Sybase), Symmetric Replicator (ORACLE), etc. The hybrid update one has another update
schema fundamentally in another sites that has a role to update views and replicas such as
the Global Update File {SP89].

The views that to be updated immediate have to be consistent with the relations they are
defined over, whereas the deferred views need not to be consistent with the base relation

transactions but have to be consistent at query time. Periodic views are requested to be

—-516-—

consistent with the state of the derived relations at the time of predetermined update periods.
It is necessary that the view refresh requires extra works to be done in response to those
update needs. If the views are an immediate views, then the transactions should have
additional loads. In case of deferred views, an additional index maintenance mechanism such
as view caches [RO91] will be needed. In case of periodic updates, the additional work is
needed in the maintenance of logs such as called the relevant logs [DGA96] or the

differential files in [SP89] and [LP98].

3. View Update Algorithms

Here several algorithms that update the views that have update policies such as immediate,
deferred, and periodic, and the update strategies such as base table method as Semi-join and Delta
File method, respectively. It is assumed that relation R’ named A is located in site i and R,B
named B in site j are to be jc .ed at site X where the Join Master File (or the views) locates,
normally for / =% j = k. Here, for the sake of convenience, we set Ar as a foreign key of
relation R’ so that it can be relevant to the primary key of relation R,-B. The algorithm DeltaFile,

therefore, is as follows.

Algorithm: update deferred view
Input: Update command U to the view V
Output: Consistent view V after the update command U
Method:
If V needs to be updated
compute the incremental changes of V;
update the changes to the relevant base relations;
update the view V;

end.

Algorithm: semi join
Input: Update command U to the View V

Output: Consistent View after the update command U

—517—-

Method:
If U is the update(insert, delete, and modify) of base tables
for each view V to be updated do
If ever, then send the primary key of table R; to site j where R; is located.
If ever, then send the tuples of R, that are matched with that of R,
Join R; and the tuples sent from R;
send them to the sites where materialized views are located.
Append the systime;
endfor
Else
Append the systime;

end.

Algorithm: update DeltaFile
Input: Update command U to the view V
Output: Consistent view V after the update command U
Method:
If V needs to be updated
Begin
/* In site i */
CREATE DeltaFile;” AND APPEND as
DeltaFile; [TID] « T[TID]
DeltaFile; [A.] — T,d[A,,]
DeltaFile,’[TS] « T\ '[TS]
DeltaFile; [OP] « T [OP]
Stop;
If TY[OP] = ins or mod
THEN Send DeltaFile;” to relevant join site
If T[OP] = del
THEN
Select all the tuples that were deleted as DeltaFile;” for

DeltaFile,'[TID] «— T {TID
/]

-~ 518~

DeltaFile;’ [TS] « T[TS]
DeltaFile,’[OP] «— T{[OP]

Send DeltaFile;” to site k /* Join Master File site */

Else
DeltaFile;’[TS] « T/[TS]
Send the DeltaFile;"[TS] to site k
/* The time-stamp only will be sent to the Join Master File */
Stop;

/* In site j */
Begin
If DeltaFile;'[Ax] = T{[TID]
/* If the foreign keys will be matched to the differential file in site j */
JI = DeltaFile; [TID] X T

/* Join with the differential file */

Else
J2 = DeltaFile,'[TID] X R;
/* Join with the base Table in site j */
Set JF = JI U J2
Send JF to site &
Stop;

/* In site k */
Begin
If DeltaFiley” U J = @
THEN Update the Join Master File (or the join view) with DelfaFile;” and JF
ELSE Update the time-stamp with DeltaFile; [TS]
Stop;
End.

A

3. Parameters and Cost functions

3.1 Cost functions
General parameters for distributed databases:

2 : the set of site index, for i €& = (I, 2,..,, n}

—-519—-

B : Page size (bytes)

X~ : the join operator

SF 1 Semi-join factor

Cro : the input and output cost(ms/block)

Comm : the transmission cost(bits/s)

Hp s . the height of B” tree at S site

R, K : the base table in site i and the screened one respectively.

dR, dR : the delta file of the base table R; and that of the screened one

respectively.

Parameters for the number of tuples:

Pror x : the probability that all the tuples needed to join in DFj;
N(R), N(R) . the number of R; tuples per page (=B/Wr;) and that of R,
N(dR), .N(d}?y : the number of delta file of the screened R; and R; respectively.

MRIPK].N(R[PK]): the number of primary key's the R; and R; respectively.

Parameters for the reduction procedure:

as : screen factor for view predicate

Winy, Wae, Wmoa : the width of MF tuples with OP = ins, del, and mod respectively
Wei, Wopy , We : the width of R, DDJ;, and materialized view V; respectively.

Ws . the width of the B tree.

3.2 Related Cost functions: Yao's and Referential function

We assumed here that R, and R, have clustered indexes on the attributes to be joined. The
communication costs and the /O costs without computing costs are considered. (DB relations
are generally stored in the costless Disks, and the portion of computation time at the main

memory is known to below 1% in the total cost)

3.3.1. Yao's Function
Yao suggested a cost function that for accessing k records randomly distributed in a file of n
records stored in k pages, a formula for the expected optimal number of page accesses is

given in [YAO77]:

-520—

Ok, n,) = ml 1 — ;%), where d=1—1/m)

This formula assumes that the scheduling of page accesses is optimal, that is, the same page

is not accessed more than once.

3.2.2. Referential Function
The expected number of blocks to be searched in a referenced file is-as follows where the
number of records related is k. The proof of this function is abbreviated and will be made

next time.

, _ i—1
Uk,n,m)= gljp(l—p)’_l, for p= gﬂ—,ﬁ)—“)

3.3 The Cost functions:
Cost functions and their explanations are denoted as follows. The functions are denoted by
NIO's and NCOM's in the DeltaFile method, DIO's and DCOM's in Deferred view method,

and semijoin by SIO's and SCOM's, respectively.

Cost functions of the DeltaFile method:

NIOl = Cost of reading delta file tuples and sort them from dR; = 3*CyoN(dE)*Wx/B

NIO2 = Cost of reading and sorting dF; tuples = 3*CyoN(dE)Wx/B

NIO3 = Cost of reading and sorting DeltaFile = 3*Cyo*N(dE) Weariic/ B

NIO4 = Cost of reading N(R) tuples and sort them in DeltaFile = 3*Cyo*N(R)*Wr/B

NIOS = Cost of accessing the B' tree and view table at the view site = Cio[(Hp s - 1) +
#Ha,N(R), aN(R)Ws/B, NRR)]] + 3*Cio*®aN(dR,), aN(R)Wr/B, N(R)]

NCOMI = Cost of transmitting tuples to site i to site j = 8N(dF)*Wgr/Coomm

NCOM2 = Cost of sending joined tuple to View site + Cost of sending the change of
Relation R/ to the view = S*N(@R)*Wmvi/Ceomm + 8[N(R.ue)Waer +
N(R; mod) Wnodl/Ceomm

The costs of the algorithm Deltafile method can be ilNlOi + ﬁ CCOM,j.
1= 1=

—-521—

6. Summary

View maintenance and materialized views are considered to be important for suggesting
solutions to the problems such as a decision support, active databases, a data warehouse,
temporal databases, internet applications, etc. Maintenance of materialized views is applied to
the replica update problem without extra-efforts. It can be viewed to the client-server
architecture that extracts the changes of the distributed source data and transfers them to the
relevant target sites. In this paper an analysis is addressed that formulates the cost functions
and evaluates them as the propagation subjects, objects, and update policies. The propagation
subject can be the client side, server side, and the third; and the objects can be base tables,
semi-base tables, and delta files; And the update policies can be the immediate, deferred, and
periodic ones, respectively.

In this paper a join query is a testbed not only because it can cover almost all
operations in relational database systems but also because it is one of the most
time-consuming and data intensive operations, especially for a distributed environment. The
cost functions and their performance analyses indicate that the delta file method with periodic
update scheme is superior to base table methods in normmal situations, but is closely dependent on
the number of differential tuples, the screen factor, and the transmission speed. Immediate update
is not scalable with respect to the number of views, so a system cannot define many immediate
views. Deferred update is, however, distinguished as a base table method at the point of the
updating of the relevant views, so it can appropriately be called a 'semi base table’ method.
If one can tolerate asynchronous updated data and stale data set, then periodic update with delta

file will be the best alternative.

References

[BLT86] J.ABlakeley, P.Larson, and F.W.Tompa, "Efficiently updating materialized views," in
Proc. ACM-SIGMOD Conf Management of Data, Washington D.C., May 1986

[CK+97] L.Colby, A Kawaguchi, D.Lieuwen, 1. Mumick, and L.Ross, "Supporting Multiple View
Maintenance Polices," Proceedings of the ACM SIGMOD, 1997, pp.405-416.

[DGA96] D.Chao, G.Diehr, A. Saharia, "Maintaining Remote Join Materialized Views," Working
Paper, San Francisco State University, 1996.

[GL96] T.Griffin, and L.Libkin, "Incremental Maintenance of Views with Duplicates," ACM
SIGMOD'95, San Jose, 1996, pp. 328-339.

[GO94] R.Goldring, "A Discussion of Relational Database Replication Technology," /nfoDB, Spring

- 522—

1994.

[LG96] W.J.Labio, and H. Garcia-Molina, "Efficient Snapshot Differential Algorithm for Data
Warehousing," Proceedings of the 22nd VLDB Conference, Bombay, India, 1996, pp.
63-74.

[LP98] W.Lee. and J.Park, "An Asynchronous Differential Join in Distributed Data Replications,”
to appear in the Journal of Database Management, 1998.

[LPS96] W.Lee., J.Park, and S.Kang, "Replication Server Scheme in Distributed Database Systems,"
Proceedings of "96APDSI conference, Vol. 3, 1996, pp. 1275-1282.

[MZ97] L. Motakis and C.Zaiolo, "Temporal Aggregation in Active Database Rules,” in Proc.
ACM-SIGMOD, June 1997, pp. 440-451.

[0S95] G.Ozsoyoglu, and R.T.Snodgrass, "Temporal and Real-Time Databases: A Survey," /EEE

Transaction on Knowledge and Data Engineering, Vol. 7, No. 4, Aug. 1995, pp.
513-532.

[RO91] N.Roussopoilos, "An Incremental Access Method for ViewCashe: Concepts, Algorithms,
and Cost Analysis, ACM Transactions on Database Systems, Vol. 16, No. 3, Sept. 1991.

[SP89] A.Segev, and J.Park, "Updating Distributed Materialized Views," IEEE Transactions on
Knowledge and Data Engineering, Vol. 1 , no. 2, June 1989.

[TGH9S] V.1.Tsotras, B.Gopinath, and G.W.Hart, "Efficient Management of Time-Evolving
Databases," IEEE Transaction on Knowledge and Data Engineering, Vol. 7, No. 4, Aug.
1995, pp.591-608.

[WSD95] O.Wolfson, P.Sistla, S. Dao, K.Narayanan, and R. Raj, "View Maintenance in Mobile
Computing," ACM SIGMOD Record, Vol. 24, No. 4, December 1995. pp. 22-27

[YAO77] S.B.Yao, "Approximating block accesses in database organizations,” Communications of
the ACM, Vol. 20, April 1977.

[ZG+95] Y.Zhuge, H.Garcia-Molina, J.Hammer, J.Widom, "View Maintenance in a Warehousing
Environment," ACM SIGMOD'95, San Jose, 1996, pp. 316-327.

- 523 -

