’97 Internaticnal Conferance Multimedia Databases on Internet
October 10, 1997, Seoul Korea

*A Study of Efficient Access Method based upon the Spatial Locality of
Multi-Dimensional Data

Yoon, Seong-young Joo, In-hak Choy, Yoon-chul

Multimedia/Graphics Lab.

Yonsei University, Computer Science Dept.
Seodaemun-gu Shinchon-dong 134
Seoul, Korea, 120-749
E-Mail : yunix@rainbow.yonsei.ac.kr

ABSTRACT

Multi-dimensional data play a crucial role in various fields, as like computer graphics,
geographical information system, and multimedia applications. Indexing method for multi-
dimensional data is a very important factor in overall system performance. What is proposed in
this paper is a new dynamic access method for spatial objects called HL-CIF(Hierarchically Layered
Caltech Intermediate Form) tree which requires small amount of storage space and facilitates
efficient query processing. HL-CIF tree is a combination of hierarchical management of spatial
objects and CIF tree in which spatial objects and sub-regions are associated with representative
points. HL-CIF tree adopts “centroid” of spatial objects as the representative point. By reflecting
objects’ sizes and positions in its structure, HL-CIF tree guarantees the high spatial locality of

objects grouped in a sub-region rendering query processing more efficient.

Keywords : spatial indexing, spatial access, GIS, index tree, computer graphics.

1.Introduction

Recently, spatial data processing, widely used in computer graphics, geographical information
system, multimedia application, and CAD, has emerged as one of the most important issues in the
studies of data manipulation. Indexing method is crucial in terms of determining overall
performance in database management system. However, conventional indexing methods which
handle one-dimensional alphanumeric data has proven to be inefficient in its application to spatial

data whose sizes and positions together should be taken into consideration in indexing system.

HL-CIF(Hierarchically Layered Caltech Intermediate Form) tree is proposed as a solution to
this problem and to provide a new dynamic access method for spatial objects. HL-CIF tree is more
efficient because it requires smaller amount of storage space and facilitates efficient query
processing. HL-CIF tree combines hierarchical management of spatial objects and CIF tree, which
associates spatial objects with sub-regions by representative points. HL-CIF tree adopts “centroid”

— 472 -



of spatial objects as the representative point. By reflecting objects’ sizes and positions in its
structure, HL-CIF tree guarantees the high spatial locality of objects grouped in a sub-region making

query processing more efficient.

This paper is organized as follows. Section 2 consists of various spatial indexing methods
and defines the properties for efficient spatial indexing method. Section 3 provides detailed
explanation of the proposed HL-CIF tree with its theoretical background, defimition, and
manipulation algorithms. The performance evaluation of the HL-CIF tree compared to R*-tree and
MX-CIF tree is presented in Section 4. In section 5, conclusion and issues for further studies are

suggested.

2. Related Studies

2.1 Classification of spatial indexing method
Established spatial indexing methods can be categorized into object mapping/transformation
method, object duplication/c’ iping method, and object overlapping method according to its

underlying principle of handling spatial data.

2.1.1 Object mapping/transformation method

In multi-dimensional data processing, point object can be handled in the same way as one-
dimensional data. Any spatial object in N-dimensional space can be represented by a point object
in 2N-dimensional space. For the purpose of utilizing this advantage of point data, object
mapping/transformation method transforms given spatial objects to point objects. The transformed
objects can be manipulated by any of conventional indexing methods such as B-tree.  Grid-file and
MLGF(Multi-Layer Grid File) are the examples of this method.

Instead of transforming N-dimension to 2N-dimension, space ordering method uses N-
dimension to 1-dimension mechanism. It partitions given N-dimensional area into uniformly sized
sub regions and imposes a sequential order to them. In terms of ordering algorithms, Hilbert curve

and N-ordering are well-known.

Though object mapping/transformation method has a major advantage in that conventional
indexing methods like B-tree can be applied directly, it has also a drawback that irregular

distribution of spétial objects results in waste of storage space and inefficient query processing.

2.1.2 Object duplication/clipping method
The indexing methods in this category are based upon the policy of dividing given N-
dimensional space into random-sized sub-regions. The divided sub-regions are disjoint, and spatial

objects any part of which overlap a sub-region arc regarded as being contained the sub-region. In

— 473 -



spatial query, using this method, all the objects contained in sub-regions, which overlap given query

area, are to be checked if they actually meet the query condition.

This method facilitates efficient query processing by preventing multiple search paths.
However, duplicate object storing can be a serious disadvantage when storage space is expensive

resource, as is often the case. R tree and mkd tree are representative methods in this category.

2.1.3 Object overlapping method

In object overlapping method, only objects fully contained a specific sub-region are stored in
the sub-region. However, this restriction imposes most sub-regions to be overlapped each other.
Overlapping sub-region implies the existence of multiple search paths in indexing process.
Multiple paths cause backtracking in travesal of index tree and result in inefficient query

processing[5]. R-tree, R’-tree, and skd tree are examples of this method.

2.2 R'-tree

R-tree is an indexing structure proposed by A. Guttmann in 1984. R-tree makes a sub-group
with the spatial objects completely contained a specific sub-region. This grouping process is
applied recursively until there is no objects remained. The restriction that an object is regarded as
being a member of a specific region only if it is completely contained in that region causes
inevitably overlaps among sub-regions.  This overlaps result in inefficiency in query processing, for

there exists multiple paths for a given search.

R’-tree was devised by T. Sellis, et al. in 1987, to improve efficiency of query processing by
getting rid of overlapping sub-region of R-tree. In R'-trce, every object is regarded as being
contained in a specific sub-region if any part of the object intersects the region. And any of two
distinctive sub-regions in the same level do not overlap with each other. This restriction
successfully gets rid of the possibility of multiple path which was caused by the existence of

multiple paths.
The R*-trec has the following properties.

(1) For cach entry (p, RECT) in an intermediate node, the subtree rooted at the node pointed
to by p contains a rectangle R if and only if R is covered by RECT. The only exception

is when R is a rectangle at a leaf node; in that case R must just overlap with RECT.

(2) For any two entries (p!, RECT1) and (p2, RECT2) of an intermediate node, the overlap
between RECT1 and RECT?2 is zero.

(3) The root has at least two children unless it is a leaf.

(4) All leaves are at the same level.

—474 -



However, a object can be contained more than one sub-regions, and this results in the waste of
storage space for duplicate objects. Also, in query processing, a spatial object may be checked
more than once, because it can be stored more than one node. It can be a serious drawback in
larger scaled spatial database, where it costs far more when in actual geometric data computation
than MBR check.

2.3 MX-CIF Tree
In R- tree family indexing methods, whole tree should be traversed to determine in which sub-
region a specific spatial object is contained. This approach can be a serious disadvantage,

especially when indexing structure is stored in secondary storage devices.

CIF(Caltech Intermediate Form) tree associates a spatial object a priori. MX-CIF tree is a
combination of MX (MatriX) tree, which is an index method for point objects and CIF tree. In
MX-CIF tree an object is regarded as being contained in a specific quadrant if the object intersects

any of the boundaries of the quadrant's child quadrants.

<Figure 2.1> shows an MX-CIF tree built with given set of spatial objects.

{ABDILO}

Iy K} {F} N} {M}

M

<Figure 2.1> MX-CIF Tree

Though MX-CIF tree has an advantage of simplified building procedures, it produces
considerable amount of unnecessary object comparisons. Suppose that rectangle L is a query
region. Then, query processing procedure with MX-CIF tree has to make a traverse and conduct
comparisons whole tree. This can induce a serious drawback of efficient query processing, which

is one of major purpose of spatial indexing method.

—475-



3. HL-CIF(Hierarchically-Layered Caltech Intermediate Form) Tree

3.1 Basic concepts

HL-CIF tree is a CIF tree with hierarchical management of layered spatial objects. In HL-CIF
tree, the spatial object is regarded as being layered according to its size. To associate a object with
a sub-region, HL-CIF tree uses "centroid" and the corner points of Minimum Bounding Rectangle of
the object. Spatial objects can be categorized to be included in a specific sub-region by its size and
location. In HL-CIF tree, a spatial object is regarded as being contained in a specific sub-region if

both its centroid and one of four comers of its MBR are included in the sub-region.

<Figure 3.1> shows the containment property of HL-CIF tree. Rectangular objects A, B,
and C are regarded as being contained in shaded region because both their centroids and one of four

corner points of their MBRs are contained in the shaded region.

<Figure 3.1> The spatial objects contained in a sub-region

The major advantage of this association property is that it guarantees the locality of spatial
objects. In HL-CIF tree, any object contained in specific sub-region can not extend to quadrants
farther than its neighboring 8 quadrants. In <Figure 3.1>, objects A, B, and C are contained in the
shaded region by the definition of HL-CIF tree, and they can not extend to farther than neighboring 8
quadrants. Therefore, assuming that a query is given to retrieve all the objects intersect the shaded

region, only the shaded quadrant and 8 neighbors have to be checked.

3.2 Definition of HL-CIF Tree

HL-CIF tree divides given N-dimensional area into 2" sub-area recursively until specific

condition meets. A spatial object is stored in a sub-region if both its centroid and one of its four

—476—



corner points are contained in one of four quadrants of the sub-region. That is, a spatial object and
its associated node are determined by the its size and location. Thus, different from R-trec family
indexing methods, HL-CIF tree has actual object clements in intermediate nodes as well as leaf
nodes. HL-CIF tree is not a height-balanced tree. However, it has been reported that "not being
height-balanced" do not always means inconsistent average searching time[16]. HL-CIF has a
record tuple (R, object-list) where R is a bounding rectangle of all the objects contained in given

node and object-list is an array of the very objects.
HL-CIF tree has the following properties.
(1) Every non-leaf node in the tree has 4 child nodes.

(2) Each node has ihe record structure (R, object id-list) where R is a bounding rectangle of all the

object contained in the node and object-id-list is an array of spatial objects contained in the node.

(3) At any two nodes, (R1, object-id-listl) and (R2, object-id-list2), R1 and R2 can overlap with

each other, but there are no common elements in object-id-list] and object-id-list2.

(4) Every non-leaf node includes a spatial object only if both its centroid and one of its four corner

points are contained in any of the node's child quadrants.

(AB)

EG | |OH

G ' ; ) ® LO) iy ™)

M

<Figure 3.2> HL-CIF Tree

<Figure 3.2> shows an example of HL-CIF tree built with given spatial objects. The letters in
the parenthesis beside a node indicate the element objects of the node. Because the building
algorithm for HL-CIF tree is very simple and intuitive, an index tree can be built without any

complicated building algorithm.

—477 -



3.3 Searching and Modifications in HL-CIF Tree

The search procedure in HL-CIF tree consists of 3 simple steps. First, retrieve all the

quadrants intersecting given query region. Second, retrieve all the neighbor quadrants of the

quadrants. Third, determine whether the objects contained in retrieved quadrants actually intersect

given query region.

Search(R pRoot, depth)
/[ R : query region.
// pRoot : start node to be searched.
{/ depth : current depth of the tree.
{
RECT tempR;

// Get entire map size.

int mapSize := GetMapSize();

/1 Check if neighbor quadrants intersect
given query region.

tempR = R + SIZE/depth;

if (CheckIntersect( tempR,pRoot)==TRUE)
CheckObject( R, pRoot);

else
return;

// Check children nodes recursively.

if (pRoot != LEAF _NODE )
{
Search(R pRoot->NW,depth-+1);

Search(R pRoot->NE,depth+1),
Search(R,pRoot->SW,depth+1);
Search(R,pRoot->SE depth-+1),

Insert ( pRoot, R)

{
RECT target;

// Determine quad in which
// given object is contained.

Target := ComputeQuad(pRoot, R );

// Add R in the sclected quadrant.
AddObject (target, R);

Delete( pRoot, R)
{
- RECT source;

{/ Determine quad in which
// given object is contained.

source := ComputeQuad(pRoot, R );

// Remove R in the selected
RemoveObject ( source, R );

<Figure 3.3> Search, Insert, and Delete Algorithm in HL-CIF Tree

Insertion and deletion operations can be conducted with no complicated algorithm. For

insertion, first, determine in which quadrant the object to be inserted is contained. And just add it to

the quadrant. Deletion procedures can be inferred in the same vein as the insertion procedure.

The algorithms of search, insert, and delete are shown in <Figure 3.3>.

— 478 -



4. Performance Evaluation

The parameters of performance evaluation are the size of spatial objects and the size of query

region. The indices for evaluation are page fault frequency, clustering degree, and overall processing

time.

Spatial index structures are, in most case, very large and normally stored in secondary storage
devices as like disk and tape. In paged storage scheme, frequent page faults apparently result in
poor efficiency in query processing. Page fault frequency shows necessary page access for
processing a spatial query. For a given query area, large page reference can be a serious drawback
in efficient query processing. It is obvious that accessing secondary storage device is far more

expensive than operation in CPU and main memory.

Clustering degree analysis provides an index for the effectiveness of indexing method in
terms of reflecting locality of spatial objects. Higher clustering degree means that given indexing
structure optimizes pages and objects necessary to be checked for query processing, which resluts in

better query efficiency.

Page fault frequency and clustering degree together determine the overall processing time.

Thus, overall processing time can be regarded as a decisive index for performance comparison.

The evaluation uses 2 randomly-generated data sets; a set of objects with the size of 0.01
percentile of total area, and that of 0.1 percentile. A data set consists of 10,000 spatial objects.
For convenience, the MBR of given objects are regarded as the object itself. Applied query regions
have sizes of 0.01, 0.1, 1, 5, 10 percentile of total areca. Each query processing result is an average

value calculated after 10 repeated applications of distinctive query region to each data set.

This evaluation is performed under the environment of Microsoft Windows 95 running on
IBM-PC equipped with Intel-Pentium 150Mhz. Testing codes are programmed in C++ language,
and compiled with Microsoft Visual C++ V.4.0 compiler.

4.1 Page fault frequency

The suppositions that each node of indexing tree is stored in a page, and that each node of

indexing tree contains approximately same amount of objects, lic on the estimating page fault

frequency.

<Table 4.1> shows the fact that page fault frequencies increase proportionally to the size of
data objects for all of the indexing methods. MX-CIF tree shows relatively higher frequency in
smaller data sets. It is due to the fact that MX-CIF tree has to check all the parent nodes to

determine whether an object meets given query.

— 479~



Object size Indexing Size of Query region (%)

(%) method 0.01 0.1 1 5 10
HL-CIF 3.57 4.15 5.68 8.59 13.62
0.01 MX-CIF 4.12 433 5.73 8.81 14.33
R* 2.42 3.31 6.61 12.39 17.82
HL-CIF 3.66 4.16 5.35 9.19 13.69
0.1 MX-CIF 422 458 5.67 8.82 14.29
R* 251 347 6.44 11.0 16.64

<Table4.1> Page Fault Frequency Result
4.2 Clustering degree

Clustering degree plays a role in estimating how well a given indexing method reflects the
locality of spatial objects. When query area intersects a sub-region, all the objects contained in the
sub-region are regarded as candidate ones possibly fulfilling the query, and are checked whether
they actually fulfill. The ratio of all the objects in sub-regions intersecting a given query region
compared to the objects meeting the query is a clustering degree. Higher clustering degree

indicates better clustering efficiency, which, in another words, is better query processing efficiency.

<Table 4.2> shows higher clustering degree of HL-CIF tree among the indexing methods for
all size of data objects. MX-CIF tree shows poor degree as predicted by its definition where all the

objects intersecting a boundary of given quadrant are to be stored in the parent quadrant of it.

Object Indexing Size of Query region (%)

size(%) method 0.01 0.1 1 5 10
HL-CIF 1.10 3.86 15.52 33.24 45.73
0.01 MX-CIF 0.54 1.92 10.0 25.81 40.94
R’ 1.06 2.73 8.65 17.24 30.71
HL-CIF 2.49 5.00 14.99 31.93 45.76
0.1 MX-CIF 091 1.95 7.68 21.97 36.99
R’ 2.38 4.06 9.82 20.59 32.91

<Table 4.2> Clustering Degree Result

4.3 Processing time

Processing time can be interpreted as a combined result of page fault frequency and clustering
degree. R'-tree shows relatively higher increase ratio in processing time, which can be explained
by the unnecessary objects comparisons caused by not guaranteeing spatial locality and duplicated
comparisons caused by its innate property. MX-CIF tree presents higher processing time especially
in smaller sizes of query region. This is because MX-CIF tree checks the unnecessary objects,

nevertheless they are spatially far from given query region only because they intersect quadrant
boundary.

- 480 -



Object Indexing Size of Query region (%)

size(%) method 0.01 0.1 1 5 10
HL-CIF 118.5 126.7 200.9 348.0 647.9
0.01 MX-CIF 190.0 188.6 2575 414.3 687.8
R* 127.6 163.9 340.4 666.8 965.9
HL-CIF 132.5 153.3 213.3 386.1 643.2
0.1 MX-CIF 278.5 300.4 352.1 506.9 762.6
R 142.4 210.5 4233 758.9 1146.0

<Table 4.3> Processing Time Result

HL-CIF tree is reported to be the most efficient in terms of processing time. As expected,
HL-CIF tree prevents unnecessary comparison by retrieving most possible candidate objects for a
query. This efficiency is induced by the fact that HL-CIF has the best clustering degree as stated

above section.

5. Conclusion

In spatial indexing structures, required storage space and efficiency in query processing are
regarded as two major tradeoffs. Most established methods achieve high utilization of storage
space at the cost of query processing efficiency, and vice versa. R-tree and R'-tree promote better
storage efficiency. But, allowing multiple search paths causes inefficiency in query processing.
Though R*-tree can get rid of the multiple scarch paths in R-tree, it requires more space for storing
objects than R-tree.

MX-CIF tree achieves high storage utilization and agreeable query efficiency with the
principle that every spatial object and its associated sub-region are determined a priori. However,
its associating policy induces inevitable drawbacks of unnecessary page references and object

comparisons.

HL-CIF tree resolves the drawbacks of MX-CIF tree by adopting locality-reflected policy in
associating a spatial object with a sub-region. HL-CIF tree, by minimizing unnecessary page
references and false object comparisons, produces better query processing throughput as well as

minimized storage space requirement.

— 481 -



References

[1} H. Samet, The Design and Analysis of spatial Data Structures, Addison-Wesley, 1989.

[2] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS,
Addison-Wesley, 1990.

[3] A.Guttman, “R-Trees : A Dynamic index structure for spatial searching”,Proc. ACM SIGMOD
International Conference on Management of Data, Boston, MA.,pp47-57, 1984. '

[4] T. Sellis, N. Roussopoulos and C. Faloutsos, “ The R" Tree : A Dynamic Index for Multidimensional
Object”, Proc. VLDB, pp507-pp518,1987.

[5] C. Faloutsos, I. Kamel, High Performance R-trees, IEEE Data Engineering Bulletin, Vol. 16, No. 3,
pp 28- pp33. Sep 1993.

[6] N. BeckMann, H. P. Kriegel, R. Schneider, and B. Seeger, “ The R*-tree : An Efficient and Robust
Access method for Points and Rectangles”, Proc. ACM SIGMOD 1990, pp.58-67, Mar 1990.

[7] G. Kedem, The quad-CIF tree : A Data structure for hierarchical on-line algorithms, Proc. Of the 19%
Design Automation Conference, Las Vegas,pp352-357, June 1982.

[8] H. Lu and B. C. Ooi, “Spatial Indexing: Past and Future”, IEEE Data Engineering Bulletin, Vol. 16,
No. 3, pp 16- pp21, Sep 1993.

[9] Beng Chin Ooi: Efficient Query Processing in Geographic Information Systems. Lecture Notes in
Computer Science No. 471, pp22-pp59, Springer, 1990.

(10] M. N. Gahegan, An Efficient use of quadtree in a GIS, International Journal of GIS, Vol.3, No.3,
pp201-214, 1989.

[11] O. Gunter,, J. Bilmes, “Tree-based access methods for spatial databases : Implementation and
performance Evaluation”,IEEE Transactions on Knoledge and Data Enginnering, Vol. 3, No. 3, pp
342-pp356, Sep 1991.

[12] T. J. Ibbs and A. Stevens, Quadtree storage of vector data, International Journal of GIS, Vol.2, No.1,
pp43-56, 1988.

[13] B. C. Ooi, K. J. McDonell, and R. Sacks-Davis, Spatila k-d tree : An Indexing mechanism for spatial
database, Proc. Of the 11" International Computer Software and Applications Conf.(COMPSAC),
Tokyo, pp433-438.,October 1987,

(14] Hwang, B. Y., Byun, B. K. and Moon, S. C., “Efficient Access Method for Multidimensional
Complex Objects in Spatial Databases : BR Tree”, Journal of Microprocessing and
Microprogramming, Vol. 32, No.1-5, pp.765-772, 1991.

[15] Michael Freeston, A General Solution of the n-dimensional B-tree Problem, Proc. of the 1995 ACM
SIGMOD, Vol. 24, No. 2.pp80-91, June 1995.

— 482 -



