~ . 2s 25 B
ZZ2olA He &8 Y
= = |
J&d HEo #5354
AYA HAEY &FA 4FA

A differential Uniformity of Permutations v* in GF(2")

Kim, Hee-Jean Kim, Jong-Deok Son, Jung-Je Lim, Jong-In
Dept. of Mathematics, Korea University

November 7, 1997

Abstract

S-box$) FETH HPo] B2 Fx FuYF HPY
o714 Lae YA HAolg 4P AW &

4% A2 AsTAY] HAE JEY e %
th 2 ERoAE 220} A9 UNAE YOE BHE B &
+8 ol4% Sboxe] A& MBS Z5Al Bl Hedeh

Mk
0 1<t ot £

1 Introduction

Most block ciphers have S-boxes(substitution box) or vector Boolean func-
tions for encryption and decryption. The desirable properity which S-boxes
and Boolean functions have to have is nonlinearity. We want to find out
S-boxes and vector Boolean functions with high nonlinearity for designing
block cipher and stream ciphers. Security of block cipher depends mainly on
S-boxes and that of stream cipher also depends on Boolean functions. How
to construct or how to find out cryptographically good S-boxes are very
important problems in designing a block cipher. A vector Boolean function
f 125 — ZT is considered as a S-box.

For even small n,m, to search exaustively vector Boolean functions is
infeasible. Thus we need a systematic method to construct S-boxes. Many
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results on the area to construct S-boxes have been published(1], (5], [6]. Now
we are concerned with the case of n = m, that the domain and the co-domain
of a vector Boolean function f are same, which says f is a permutation of
GF(2™).

K. Nyberg [5), [6], researched cryptographic properties on some types of
the permutation functions, for example, z~! and z2+1 over GF(2"). She
presented a permutation function u® over a prime field GF(p), where p is
prime, u is a primitive element of GF(p) and « is an integer, and studied
cryptographic properties on permutation functions.

Now we want to present a permutation over GF(2") with cryptograph-
ically good properties. Assume u € GF(2") is a primitive element. Define
f: 29 — GF(2") by

_Ju® ifx#0
ﬂ”“{o ifz=0"
It will be said to be a exponent permutation, informally. But K. Nyberg, [6],
T. Beth [1] and others have called a permutation like zF to be a exponent
permutation, but we had better call it by a monomial permutation.

Exponential permutations have very useful properties. First, it can have
a precomputation table since the base u is fixed. Thus, secondly, we can
design the block cipher with a large-size S-box. Generally speaking, the
more S-box size, the better S-box security. In fact, it is impossible for block
ciphers to have large-size S-box, because S-box data are in the memory
and to encrypt a message without sufficient memories takes too much long

time. Large size S-boxes need huge memory exponentially. Finally, we can
construct variable size S-boxes using the exponent permutation.

2 Definitions and Notations

For a Boolean function f : GF(2") — GF(2™) , a € GF(2") and b €
GF(2™) Then we make the following notation.

d¢(a,b) = #{z € GF(2")|f(z + a) + f(z) = b}

Definition 2.1 Let f : GF(2") — GF(2™) be a function. Then f is called
differentially é-uniform if

rr;é%%éf(a, b) <é foralla € GF(2")(a #0),b e GF(2™),
a#0,

A(f) = maxgz00¢(a, b) is said to be the differential uniformity of f.
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Clearly A(f) > max{2,2" ™} and f is differentially A(f)-uniform. In order
that a S-box f is resisitant against the differential cryptanalysis, A(f) have
to be small. '

Since GF(2") = GF(2)[t]/g(t), where g(t) is an irreducible polynomial
in GF(2)[t] and t is an indeterminate. Then z € GF(2") can be represented
by a polynomial basis {t*"1,.--,t,1}, say T = Zpy -t 1+ + 1y -t + Z.

Assume that u is a primitive element in a Galois field GF(2"). Consider
the function f(z) : Zon — GF(2") defined by f(r) = «*. But f is not a
injective map, since u® = u?"~! = 1. and there is not = € Zs» with f(z) = 0.
Thus we have to replace f(0) by 0 or f(2" — 1) by 0. Then f is injective.

Definition 2.2 Let v be a bijective mapping defined by

¥v: GFQ") — Zp
z F——*:Dn_l-zn—l+"'+$1-2+$o,

where T is represented by a polynomial basis and let u be a primitive element

of GF(2™). Define f : GF(2") — GF(2") by

[ u¥® iz #£0
f(‘”)‘{o fr=0"

Then f is said to be a exponent permutation.

In general, two different exponent permutation f and g are not equivalent
in the sense that f = A o g o B for some linear transformations A and B.

Theorem 2.1 The number of ezponent permutations of GF(2") is less than
or equal to

¢(2nn_ 1) Eu (g) 2d = ¢(2n - 1) Z”(d)zn/d’

dn ST

where ¢ is the Euler function and u is the Mobius function.

3 Differential uniformity of exponent permutations
Our purpose is to find cryptographically good vector Boolean functions or

S-boxes, say f : GF(2") — GF(2™), which means it has high non-linearity
and small differential uniformity. But it is not easy to find a good vector
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Boolean function exaustively for even small n, m. Thus we want to use a
algebraic tool to construct good vector Boolean function. First of all, we
will restrict the concerned vector Boolean functions to the permutation on
Galois fields GF(2"), that is, f : GF(2") — GF(2™). Some algebraically
special type of permutations on Galois fields were researched. K. Nyberg
studied on the permutation functions on Galois field like z~! and z2+1 and
on the exponent permutation functions on finite prime fields Z, like u¥,
where u is a primitive element [6]. But the study on the exponent functions
on GF(2™) was not researched cryptographically in a sense. In this paper,
we want to study on them.

Let ¥ : GF(2Y) — Zan be the function defined in Definition 2.2. In
general, ¥ (z+a) # ¥(z)+1(a), since the algebraic structues of GF(2") and
Zyn are different from each,other. But, its equality may hold in some cases.
The following lemma says their cases. To find an upper bound of A(f), we
need the following lemma. If z is an element of GF(2"), we can represent
as z = (zp-1,- -, 21, Z0), since GF(2M) is a vector space over GF(2).

Lemma 3.1 Let z and a be elements in GF(2"), then we can represent
z and a as £ = (Tp-1,---,%1,%0) and a = (Gn-1,--,a1,0ap), respectively.
Assume that if a; = 1, then z; = 0, which says that the case of z; = a; = 1
does not occur for alli € {0,1,---,n—1}. Then ¥(z & a) = ¥(z) + ¥(a),
where v is the function defined in Definition 2.2.

Proof. Let @ denote the addition over Z, i.e. the bitwise exclusive or
operation in the computer instruction. Under the given condition, z; + a;
has no carry in the usual addition, since the case of z; = a; = 1 does not
occur for all i € {0,1,---,n — 1}. Thus

Y()+Y9(y) = ¥ ((Ta-1,- 71, 20) ® (@1, -,01, %))
= 2p 2"l qz 243
+n-1-2" 4+ 4a1-2+ag
= (Tn-1+Gn-1)-2"1 4o+ (21 + a1) - 2+ (20 + ag)
(Tn-1 ®apo1) - 2714+ + (21D ay) - 2+ (20 D ap)

i

= Y(Tp-10 an-1, -, T1 ® ay,, zo D ag)
= Y ((®Tn-1,""",Z1,%0) ® (@n-1,* -, a1, 00))
= Y(z+a)

~ The lemma is proved. O
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Some tedious manipulation yields the following theorem using Lemma
3.1

Theorem 3.1 Let f : GF(2") — GF(2") be a exponent permutation and
let a(# 0),b be in GF(2™). Then

8¢(a,b) < min{2¥4®) 4 2, on—wHalH1 | 9}
where wt(a) is the Hamming weight of a.

Theorem 3.1 says that a small difference of input data yields good dif-
ferential uniformities. Now we may get a differential uniformity of exponent
permutation using the above theorem.

Theorem 3.2 Let f be a exponent permutation of GF(2"). Then A(f) <
2131 4 2.

In addition, we have a result on a differential uniformity.

Theorem 3.3 Let f and g be ezponent permutations of GF(2"). Then
A(g) < A(f) +4.

This theorem says that when we get a differental uniformity of an expo-
nent permutation of GF(2"), we may know an upper bound of differential
uniformity of all exponent permutations of GF(2").

The following tables are some computational experiment results.

irreducible polynomials | primitive elements u
g(t) t | t+1

| t+t+1 1 4 | 4 |

Table 1: A(f) in GF(2?)
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irreducible polynomials primitive elements u
g(t) t [t+1] 2 [#+1] 8+t | t"+t+1
B4+t +1 2 4 2 4 2 4
2 4+tP 41 4 2 4 2 2 4

Table 2: A(f) in GF(2%)

primitive element irreducible polynomial g(t)
u Tt [P+ B+ [+t 41

t 4 6 -

t+1 4 : 6

2 4 6 :

t“ 41 4 - 6

2+t 4 4

t+t+1 4 4

£ +1 6 6 6

£+t : : 4

B+t+1 6 4
£+t . 4
P+t +1 6 4

A 6 6 6

Table 3: A(f) in GF(2%)

4 Conclusion

In the cases of n = 2 and n = 4, the upper bound of A(f) in Theorem 3.2 is
tight. But in the cases of n > 5, A(f) is less than the above upper bound,
which says it is more resilent to the differential cryptanalysis. The thoerem
says that the largest probability for the differential cryptanalysis is less than
or equal to 2°% 4+ 27 "+! when n is even and 2-2 4 2-"+1 when n is odd.
In the application to Feistel network in designing a block cipher, it has the
probability less than or equal to the value approximate to 2~"*! in s-round
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differential, s > 4 (8].

To prove that the exponent permutation is resistant against the different
cryptanalysis, we have to find an upper bound less than that of Theorem
3.2. In addition, we did not state the nonlinearity of exponent permutations
for resistance against the linear cryptanalysis. Thus we need more research
on the exponent permutation to construcr S-box.
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