Static Analysis of AND-parallelism
in Logic Programs based on Abstract Interpretation
FHANYL ol 7
=2 deole] AND-¥E H23 55 71

Hiecheol Kim - Yong-Doo Lee
Division of Computer & Communication Engineering
Taegu University
A3 A - o §&F

(7oista ZREAFT)

Abstract

Logic programming has many advantages as a paradigm for parallel programming because
it offers ease of programming while retaining high expressive power due to its declarative
semantics. In parallel logic programming, one of the important issues is the compile-time
parallelism detection. Static data-dependency analysis has been widely used to gather some
information needed for the detection of AND-parallelism. However, the static
data-dependency analysis cannot fully detect AND-parallelism because it does not provide
some necessary functions such as the propagation of groundness. As an alternative
approach, abstract interpretation provides a promising way to deal with AND-parallelism
detection, while a full-blown abstract interpretation is not efficient in terms of computation
since it inherently employs some complex operations not necessary for gathering the
information on AND-parallelism. In this paper, we propose an abstract domain which can
provide a precise and efficient way to use the abstract interpretation for the detection of

AND-parallelism of logic programs.

| . Introduction

Due to ease of programming and high expressive power derived from the declarative

semantics, logic programming has been increasingly used for a wide range of

application areas such as symbolic computing. Parallel logic programming has been

recognized as a promising way to improve the performance of logic programming since

_79_



logic programs frequently require a large amount of computation as they become more
realistic. Indeed, many researchers have pursued the goal of designing efficient
téchniques for parallel logic programming systems.

One major trend to adopt logic programming for parallel execution is to try to
maintain the standard semantics of Prolog and let the compiler and the runtime system
extract the parallelism hidden in the program. Parallelism in Prolog can be exploited in
different levels. In the clause/procedure level, we can exploit medium grained
parallelism such as AND- and OR-parallelism. As the runtime test is usually very
expensive, compile-time analysis becomes crucial for the detection of the parallelism of
the program. .

There are two important kinds of information that enables to exploit
AND-parallelism in Prolog programs, variable sharing and groundness propagation.
Two different approaches are frequently used to obtain the information. One approach
is based on the static analysis of some relations, to be used in the exposition of the
AND-parallelism, such as data-dependency.(Chang,1985, Debray,1986) For example, the
SDDA(Static Data-Dependency Analyzer) detects the data-dependency at compile-time
to gather the variable coupling information.(Chang,1985) It is later enhanced to deal
with propagation of groundness by using the strong coupling concept.(Chang,1985) The
other approach is based on the abstract interpretation that is frequently used as an
elegant and sound framework for code optimization of declarative languages.
(Abramsdy,1987, Bruynooghe,1987, Cousot,1977, Getzinger,1993, Jacobs,1991, Jacobs,1989,
Mellish,1985, Mellish,1986, Xia,1988)

Even though static data-dependency analysis and abstract interpretation is useful for
gathering some necessary information for the detection of AND-parallelism, they
usually have some problems. The static data-dependency analysis is not sufficient to
fully detect the AND-parallelism due to its limited capability with such functions as
the propagation of groundness. On the other hand, the full-blown abstract interpretation
is not efficient in terms of computation since it inherently employs some complex
operations not necessary for gathering the information of AND-parallelism. In order to
gather the information precisely and efficiently, a proper abstract domain is needed.
The goal of this paper is to propose an abstract domain designed subject to the

functionality and efficiency.

-80_



<Table 1> Conditions for Abstract Interpretation

Condition Intuition

The order is preserved in conversion (but

might be approximate).

Concretization followed by abstraction is

exact.

Abstraction followed by concretization is

accurate, but approximate.

HVde D: Abstract 'interpreta.tion safely ' mimics
Ex(7(d) S ADd) concret.e interpretation (but might be

approximate).

1) @ and y are monotonic

2) Vd € D: d=a(x{d))

3) Ve e E: e © Hale))

This paper is organized as follows. Section 2 briefly introduces the parallelism in
logic programs, the static information required for the detection of AND-parallelism,
and finally the concept of abstract interpretation and its framework. Section 3 provides
an in-depth discussion on the abstract domain that we developed for AND-parallelism.
In section 4, the performance of the proposed domain and its implementation issues are
briefly discussed. Finally, concluding remarks and the suggestion of future research are

offered in section 5.

11 . Background

This section provides an introduction to the parallelism in logic programs, the
information required to detect independent AND-parallelism follows, and the outline of
abstract interpretation of its framework. Due to space limitation, the detailed description
of domain theory and the abstract interpretation are not exposed here. They are found

in some other tutorials or references.(Abramsdy,1987, Bruynooghe, 1987, Jacobs,1991)

1. Parallelism in Logic Programs
Among many opportunities of parallelism in Prolog program, AND- and

OR-parallelism are two important types of parallelism. A Prolog program is normally

represented by an AND/OR tree due to its simple syntax and regular structure.

_81_



Although we omit a more detailed discussion of the AND/OR tree, it should be noted
that the AND/OR tree describes the parallelism which exists in Prolog programs. The
AND/OR tree of a logic program reveals that some branches of the tree can be
executed in parallel. When the partitioning is done at a clause node, to make calls to
subgoals in parallel is referred to as AND-parallelism. OR-parallelism comes from the
observation that there are usually multiple clauses with the same predicate symbol in
their head literals. When the program execution is partitioned for each branches of a
predicate node, ie., for each alternative clauses, the parallelism exploited is referred to
as OR-parallelism.

The task which executes one of the OR-branches can continue with the next
subgoal in its parent’s clause. In the AND-parallelism, when the parallel execution is
restricted only to the subgoals which do not interact with each other without any
share variables, the AND-parallelism is, in particular, referred to as independent
AND-parallelism. Independent AND-parallelism is the main concern of this paper.

Hereafter, we will call it just as AND-parallelism.
2. Abstract Interpretation Frameworks for Logic Programs

Abstract interpretation provides a good theoretical model which helps a wide range
of program analyses.(Cousot,1977) It allows to generate automatically correct statements
about the substitutions, which can occur during program execution, by a simulation
based on some approximation. Abstract interpretation thus replaces the standard
semantics of the program to be analyzed with “collecting” semantics. by replacing
concrete data values with abstract descriptions. the semantics are used to “collect”
information about program states reachable during the execution of the program.

Formally, the abstract interpretation is explained as follows.

If E is the powerset of a set of data object(the concrete domain) in a program P,
and D is a partiality ordered set of descriptions(the abstract domain). An abstract
interpretation is formally' defined by four functions: Ep: E—E, Dp: D—-D, «¢: E—D, 7:
D—E (<Fig 1>). These functions must satisfy the conditions listed in <Table 1>. In
order to establish an abstract interpretation framework, three basic components are

thus required:

_82_



7(Dp(d))

E,(7(d)) E b

D, (d) D
d P

7(d)

<Fig 1> Abstract Interpretation Functions

® An abstract domain.

® A specific collection of operations defined over the values of the abstract domain.

® An abstract interpreter which implements the analysis algorithm of a program and

operates on values in an abstract domain.

There have been some attempts to formalize the abstract interpretation of logic
program.(Bruynooghe, 1987, Jacobs,1991, Jacobs,1989, Mellish,1986) They adopt different
kinds of frameworks for the abstract interpretation of logic programs. They mostly use
denotational semantics, while some use the schemes based on the AND/OR tree. For
these different frameworks, the major differences are (i) the kinds of primitive
operations they introduce and (i) the method to deal with the recursion. For the kinds
of primitive operations, Jacobs uses two(Jacobs,1991) and Bruynooghe uses six
primitive operations.(Bruynooghe,1987) Generally, the finer operations an abstract
framework employs, the more easily the operations can be implemented. On the other
hand, if an abstract framework uses fewer primitive operations, the implementation and
proof of the primitive operations become more complicated and difficult. The problem of
handling recursion is how to compute the least fixpoint and several ways are adopted

such as bottom-up and top-down methods.(Abramsdy,1987)

lll. Proposed Abstract Domain

In order to identify the information on variable sharing and the propagation of
groundness with great efficiency and accuracy, we develop an abstract domain to be

used for the abstrract interpretation. This section presents the abstract domain.

..83_



1. AND-parallelism and its detection

For the detection of AND-parallelism, three kinds of information are essential as
explained below:
e Static sharing information
Static sharing indicates that some goals in a clause have textually the same
variables in their arguments. The goals which have at least one statically shared
variables cannot be executed in parallel within the context of independent
AND-parallelism. For example, consider two goals a(X)Y,Z) and b(X) which
appear in a clause. Because these goals share variable X, they cannot be
executed in parallel. The static sharing information can be identified in a very
straightforward way, e.g., by scanning the variables and comparing textually their
names.
o Aliasing information
Some goals which do not have statically shared variables may not be executed
in AND-parallel. At runtime, variables with different textual names can be with
each other as the result of reference bindings at unification. The set of variables
associated with reference bindings forms an alias. The information on the variable
aliasing is very crucial for the detection of proper AND-parallelism. If a set of
variables are aliased, the goals which have at least one variables among them in
their arguments cannot be executed in parallel. Generally, the static
data-dependency analysis or the abstract interpretation techniques can be used for
finding the aliasing information.
® Propagation of Groundness
Although the shared variables and the variable aliasing limit the amount of the
AND-parallelism to be exploited, it is noted that once the shared variables or
aliased variables are grounded, they do not limit AND-parallelism anymore.
Consider the following example.
?7- a(X,Y,Z), b(X), c(Z), d(Y,Z).
a(U,v,u).
b(2).
c(2).

._84_



d(1,w).

Due to the statically shared variable Z, it seems that c(Z) and d(Y,Z) cannot be
executed in parallel. But, in real execution of the program, we know that variable Z is
grounded with constant 2 before the execution of goal c(Z) and d(Y,Z) since variable Z
is aliased with X which is bounded with 2. It means that because the two goals do

not have any shared variables, they can be executed in AND-parallel.
2. The proposed abstract domain

Two variables are strongly coupled at a given point in the program execution if and
only if they always couple at the point regardless of the path of execution taken to
reach the point and gounding one of the variables always results in the gounding of
the other. The coupled variables which are among the coupled variables, the variables
that not strongly coupled are referred to as weakly coupled.

The proposed abstract domain is based on the concept of sharing group.(Jacobs,1989)
Let svar(x) be the set of strongly coupled variables for a variable x. For a given
substitution &, variables u and v (y,u € dom(¢)) are denoted to share variable w if

w € svar(u)Nsvar(v).

® Sharing group of variable w for substitution &, denoted as sg(8,w), is the set
of variables that share w. Let Subst and Var be respectively the set of
substitutions and variables and P(x) be the power set of component x. Then, sg
is a mapping as below:

sg . Subst X Var — P(Var)

® Sharing S is defined to be a set of sharing groups, ie, S = P(P(Var)). Intuitively,
substitution 6 is approximated by S if S contains the sharing group of each

variable x (x € rgv(8)). That is,
7 (S)={[s]IVvErgv(s,v)sgls,v)ES)

From sharing S, we can derive independency relation and ground propagation

information for the detection of AND-parallelism. as follows

_85_



Groundness : if variable x does not belong to any set of S, x is a ground term.

~ That is, variable x is grounded if there is no variable w shared by x.

Independence : if x and y are not appear together in any set of S, variable x and y

are independent.

Coupling : Variable x and y are coupled if they belong to at least one of any sets
in S.

Ground Propagation : Grounding an element in a sharing group will ground the
other elements in the ground if and only if the elements are not appear in any

other sharing group.

Hox})

Lattice for one variables

{4 XY (X)L (Y}

{{ X Y)LAY)} {{ XY}, {X})
(X)L {Y)}

(LY} (X3}

Lattice for one variables

<Fig 2> Lattice for the proposed domain

<Fig 2> shows the lattices for one and two variables in which a variable can appear

in different sharing groups. The lattice does not directly show the information about

groundness and independence because the variables are not exposed in the lattice.

However, we can use the rules derived in the previous sections to gather the

information.

_86_



lll. Analysis of the Performance

In order to completely evaluate the performance, it is necessary to implement the
proposed domain in a compiler which supports some abstract interpretation framework.
Without a full-blown compiler, we demonstrate the feasibility and the performance of
the proposed domain just by manual application of the proposed domain to an example

sample program. The example program is shown below.

?2-a(X,Y,Z,U0),b(U),c(Y),d(2),
e(X),£(X).

a(A,AB,g(AB)).

b(g(1,2)).

c(1).

d2).

e(1).

£(1).

According to the definitions, it is straightforward that the sharing group for variable

A and B in the program is defined as follows.

sg(8.X) = {X,Y,U}
sg(8,Y) = {ZU}

From these sharing groups, sharing S is defined.
S = {{XY,UL{Z,U}}.

According to the information derivation rules discussed earlier, we can figure out Y
and Z are independent because they do not appear together in any set of sharing S.

The groundness propagation rule asserts that grounding X or Y will ground Y or X,
grounding U will ground X, Y and Z, and grounding Z will strongly couple X, Y, and
U. As we know ground X and U will ground X, Y and Z. after the match of b(U)
with b(G(1,2)), subgoals c(Y), d(Z), e(X) and fiX) can be executed in parallel.

_87_



a(X, Y, Z, U) aX, Y, Z, U)
b(U)

oU) b(U)

I S INN

l oU) dU) eU) fU)
e(U)

fiu)

(@ (b)

<Fig 3> Data—dependency graph

<Fig 3> shows two data dependence graphs. One (<Fig 3(a)>) is the graph
resulting from the analysis based on the SDDA (Chang,1985), the other (<Fig 3(b)>) is
the graph resulting from the above analysis based on our proposed domain. As shown
from the <Fig 3(a)>, the SDDA based analysis fails to detect any possible
AND-parallelism. On the other hand, our proposed domain provides a data-dependency

graph which fully detects all the possible AND-parallelism in the example program.

IV. Conclusion

In this paper, we proposed an abstract domain which can provide a precise and
efficient way to use abstract interpretation for the detection of AND-parallelism of
logic programs. Applied to an example program for which the static data-dependency
analysis (using SDDA) fails to extract any AND-parallelism, the proposed domain
successfully extracts all the AND-parallelism available in the program. Even though
we need more complete evaluation using a wide range of benchmarks, the analysis
result obtained for a sample program reflects the potential of our proposed domain for
the detection of AND-parallelism. As a future research, it is needed define some
primitive operations which will incorporate the proposed domain into an abstract
interpretation framework. Furthermore, it is required to implement them into a compiler

to build an efficient AND-parallel logic system.

_88_



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

f9l

(10]

[11]

References

S. Abramsdy and C. Hankin, editors. Abstract Interpretations of Declarative
Languages. Horwood, 1987

M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.
Technical Report CM 62, CS Dept. KU. Leuven, 1987.

J. Chang. High Performance Execution of Prolog Programs Based on a Static
Data Dependency Analysis. PhD thesis, University of California, 1985.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction of Approximation of Fixpoint. In

Proceedings of the 4th symposium on Principles of Programming Languages,
1977.

S. Debray and D. Warren. Automatic mode inferencing for Prolog Programs. In

Proceedings of the 3th Symposium on Logic programming, 1986.

T. Getzinger. Abstract Interpretation for the Compile-Time Analysis of Logic
Programs. PhD thesis, University of Southern California, Sep. 1993.

D. Jacobs. A Framework for the Abstract Interpretation of Logic Programs.

Technical report, CS dept. University of Southern California, Sep. 1991.

D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In Proceedings of North American Conference on

Logic Programming, 1989.

C. Mellish Some global optimization for a prolog compiler. Journal of Logic

Programming, 2, 1985

C. Mellish. Abstract interpretation of Prolog programs. In Proceedings of the 3th

International Conference on Logic Programming, 1986.

H. Xia and W. Giloi. A new application of abstract interpretation in Prolog
programs: Data-dependency analysis. In Proceedings of IFIP WG 10.0 Workshop

on Concepts and Characteristics of Declarative Systems, 1988.

_.89_



