퍼지 L-수렴 공간 Fuzzy L-Convergence Spaces

민 경 찬 연세대학교 이과대학 수학과 Department of Mathematics Yonsei University

Seoul, Korea, 120-749

ABSTRACT:We introduce a notion of fuzzy L-convergence of filters and show that the collection of fuzzy L-convergence spaces forms a cartesian closed topological category.

Many researchers studied on the convergence of prefilters or fuzzy filters on a set. (see [2]) In this paper we introduce a notion of 'fuzzy' convergence of filters on a set as one of attempts to get rid of gaps between mathematics and real world problem. For categorical notions, we refer to [1].

Let L be a complete Heyting algebra with a top element 1 and a bottom element 0. For a set X, F(X) is the collection of all filters on X.

Definition 1 Let X be a set. A map $l: F(X) \times X \to L$ is called a fuzzy L-convergence structure on X if it satisfies the following conditions:

- (1) $l(\dot{x}, x) = 1$ for all $x \in X$
- (2) if $\mathcal{F} \subseteq \mathcal{G}$, then $l(\mathcal{F}, x) \leq l(\mathcal{G}, x)$ for all $x \in X$.

The pair (X, l) is called a fuzzy L-convergence space.

Definition 2 A map $f:(X,l)\to (Y,m)$ is said to be continuous if $l(\mathcal{F},x)\leq m(f(\mathcal{F}),f(x))$

We form a category <u>FLC</u> consisting of all fuzzy L-convergence spaces and all continuous maps between them. The pair (X, l) is called a fuzzy L-convergence space.

Theorem 3 The category <u>FLC</u> is topological.

Proof. Let X be a set and $(X_{\alpha}, l_{\alpha}) \in \underline{\mathrm{FLC}}$ for each $\alpha \in \Lambda$. Let $f_{\alpha} : A \to (X_{\alpha}, l_{\alpha})$ be a map for each $\alpha \in \Lambda$. Define

$$l: F(X) \times X \to L$$
 by $l(\mathcal{F}, x) = \inf_{\lambda} l_{\alpha}(f_{\alpha}(\mathcal{F}), f(x)).$

Then $l(\dot{x}, x) = 1$. Let $\mathcal{F} \subseteq \mathcal{G}$ in f(X). Then

$$l(\mathcal{F},x)=\inf_{\lambda}l_{lpha}(\mathcal{F},f_{lpha}(x))\leq \inf_{\lambda}l_{lpha}(f_{lpha}(\mathcal{G}),f_{lpha}(x))=l(\mathcal{G},x).$$

Hence $(X, l) \in \underline{FLC}$.

Let $(Z,m) \in \underline{\mathrm{FLC}}$ and $g: Z \to X$ be a map. Suppose $f_{\alpha} \circ g$ is continuous for all $x \in \Lambda$. Then $m(\mathcal{A},z) \leq l_{\alpha}(f_{\alpha}(g(\mathcal{A})),f_{\alpha}(g(z)))$ for each $(\mathcal{A},z) \in F(Z) \times Z$ and $\alpha \in \Lambda$. Hence $m(\mathcal{A},z) \leq l(g(\mathcal{A}),g(z))$.

We note that the category <u>FLC</u> satisfies the fibre small condition and it has the terminal separator property. Λ

Remark 1 Let $(X_1, l_1), (X_2, l_2) \in \underline{FLC}$. Let $l: F(X_1 \times X_2) \times X_1 \times X_2 \to L$ be a map defined by $l(\mathcal{H}, (x_1, x_2)) = l_1(\pi_1(\mathcal{H}), x_1) \wedge l_2(\pi_2(\mathcal{H}), x_2)$. Then l is the fuzzy L-convergence structure for the product space $X_1 \times X_2$ in \underline{FLC} .

Theorem 4 The category <u>FLC</u> is cartesian closed.

Proof. For (X, l) and (Y, m) in <u>FLC</u>, let C(X, Y) be the set of all continuous maps between them. For each $\mathcal{L} \in F(C(X, Y))$ and $f \in C(X, Y)$, let

$$u(\mathcal{L},f) = \sup\{\alpha \in L | l(\mathcal{A},x) \land \alpha \leq m(\mathcal{L}(\mathcal{A}),f(x)) \text{ for all } (\mathcal{A},x) \in F(X) \times X\}$$

Note that $l(A, x) \wedge u(\mathcal{L}, f) \leq m(\mathcal{L}(A, x))$ for all $(A, x) \in F(X) \times X$. Clearly, $u(\dot{f}, f) = 1$. Let $\mathcal{L}_1 \subseteq L_2 \in F(C(X, Y))$, then from the formula $l(A, x) \wedge \alpha \leq m(\mathcal{L}_1(A), f(x)) \leq m(\mathcal{L}_2(A), f(x))$, it is clear to see that $u(\mathcal{L}_1, f) \leq u(\mathcal{L}_2, f)$ for all $f \in C(X, Y)$. Therefore $(C(X, Y), u) \in \underline{FLC}$.

Let $\mathcal{H} \in F(X \times C(X,Y))$ and k be the fuzzy L-convergence structure for the product space $X \times C(X,Y)$. Then

$$k(\mathcal{H}, (x, f)) = l(\pi_1(\mathcal{H}), x) \wedge u(\pi_2(\mathcal{H}), f)$$

$$\leq m(\pi_2(\mathcal{H})(\pi_1(\mathcal{A})), f(x)) \cdot$$

$$\leq m(ev(\mathcal{H}), f(x)).$$

Hence $ev: X \times C(X,Y) \to Y$ is continuous. Let $h: (X,l) \times (Z,m) \to (Y,m)$ be a map in <u>FLC</u>. Define $h^*: (Z,m) \to (C(X,Y),u)$ by $h^*(z)(x) = h(x,z)$. Since <u>FLC</u> has the terminal separator property, $h^*(z) \in C(X,Y)$ for all $z \in Z$. Take any $(\mathcal{G},z) \in F(Z) \times Z$ and $(\mathcal{A},x) \in F(X) \times X$. Since h is continuous, $l(\mathcal{A},x) \wedge n(\mathcal{G},z) \leq m(h(\mathcal{A} \times \mathcal{G}),h(x,z)) = m(h^*(\mathcal{G})(\mathcal{A}),h^*(z)(x))$. Hence $n(\mathcal{G},z) \leq u(h^*(\mathcal{G}),h^*(z))$. Therefore h^* is continuous. The uniqueness of such a map h^* is obvious.

Remark 2 1. To the definition of a fuzzy L-convergence space, we may add the condition

(3) for
$$\mathcal{F}, \mathcal{G} \in F(X), l(\mathcal{F}, x) \wedge l(\mathcal{G}, x) \leq l(\mathcal{F} \cap \mathcal{G}, x)$$

without any change in the above results.

2. As a next step, we wil try to show that <u>FLC</u> is a quasitopos. Since our notion of 'fuzzy' convergence seems to be very useful in many applications, there are many other aspects to investigate.

References

- [1] H.Herrlich, Cartesian closed topological categories, Math.Collog.Univ. Cape Town 9 (1974), 1-16
- [2] K.C. Min, Fuzzy limit spaces, Fuzzy Sets and Systems 32 (1989), 343-357