Properties of the T-Fuzzy factor Groups

Dept of Mathematics. Wonkwang University

Ik-san 570-749 Korea

Lee, Hee Jung. Choi, Kyu Hyuck

1. Introduction

The concept of fuzzy subgroup appeared in the pioneering paper [5] of Rosenfeld and J. M. Authony and H. Sherwood studied T-fuzzy group and it product. since then, papers on T-fuzzy group appear so many. In this paper we introduce the concept of T-fuzzy factor group and study its property.

2. Preliminaries

Definition 2.1 A t-norm is a function $T: [0,1] \times [0,1] \rightarrow [0,1]$ satisfy the following properties:

- 1) T(x,1) = x.
- 2) T(x,y) > T(x,z) if y > z.
- 3) T(x, y) = T(z, u), if $x \ge z$ and $y \ge u$
- 4) T(x, T(y, z)) = T(T(x, y), z)

for all x, y, z and u in [0, 1]

Definition 2.2 A function $A: G \rightarrow [0,1]$ is a T-fuzzy subgroup of G if there is a t-norm T such that for all $x, y \in G$:

- 1) A(xy) > T(A(x), A(y))
- 2) $A(x^{-1}) = A(x)$
- 3) A(e) = 1 where e is the identity of G

where G denote a group whore operation is suppressed and indicated by juxtaposition.

Definition 2.3 For i=1 and 2. Let A_i be a T-fuzzy subgroup of G_i . If there is a group homomorphism (isomorphism) f from G_1 onto G_2 such that $f(A_1)=A_2$ then we call A_1 and A_2 are homomorphic (isomorphic).

Definition 2.4 Let A be T-fuzzy subgroup of G. If A(xy) = A(yx) holds for all x, y in G, then we call A the T-fuzzy normal subgroup of G.

Definition 2.5 Let A, B be separately fuzzy subsets of the nonempty set G. T a t-norm. The inner product of AB is the fuzzy subset of G defined by

$$AB(x) = \sup T(A(a), B(b)), x \in G.$$

$$x = ab$$

Definition 2.6 Let A, B be fuzzy sets of G, G' respectively T a t-norm. Then the direct product $A \times B$ is the fuzzy subset of $G \times G'$ defined by

$$A \times B(x, x') = T(A(x), B(x')), (x, x') \in G \times G'.$$

Definition 2.7 Let A be a T-fuzzy subgroup of G and $a \in G$. Then aA(Aa) is called a left(right) fuzzy coset of A in G defined as following:

$$(aA)(x) = A(a^{-1}x)$$
, for any $x \in G$.

It is clear A is normal iff aA = Aa for all a in G.

Proposition 2.8 $aB = Ba \text{ iff } B(a^{-1}b) = B(e).$

proposition 2.9 Let j be a homomorphism from G onto G'. T a continuous function. A a T-fuzzy subgroup of G, then f(A) is a T-fuzzy subgroup of G'.

3. T-fuzzy factor group

Proposition 3.1 Let B be a T-fuzzy subgroup, a, b in G. Let $X = \{x: xB = aB\}$, $Y = \{x: xB = bB\}$, $Z = \{x: xB = abB\}$, then Z = XY.

Proposition 3.2 If B is normal, aB = bB, then $a^{-1}B = b^{-1}E$.

Definition 3.3 Let T be a t-normal. If T is a continuous function, then T is called a continuous t-norm.

In the Following we always assume T is a continuous t-norm. Let A be a T-fuzzy subgroup of G, B a T-fuzzy normal subgroup.

We define a fuzzy set on G/B as following

$$A/B: G/B \rightarrow [0,1], \quad A/B(aB) = \sup A(x), \text{ for any } ab \in G/B.$$

$$xB = aB$$

Proposition 3.4 The above A/B is a T-fuzzy subgroup of G/B.

Proof 1) A/B((aB)(bB)) = A/B(abB) $= \sup A(xy) \ge \sup T(A(x), A(y))$ $= T(\sup A(x), \sup A(y))$

> 2) $A/B(a^{-1}B) = \sup A(x^{-1})$ = $\sup A(x) = A/B(aB)$

3) A/B(B) = A(e) = 1

Definition 3.5 We call the above A/B is T-fuzzy factor group of A with respect to B.

= T(A/B(aB), A/B(bB))

Proposition 3.6 Let A and A' be T-fuzzy subgroup of G, G'. Respectively, η a homomorphism from G onto G' satisfying η (A) = A'. Let B be a T-fuzzy normal subgroup of G satisfying $\ker \eta = G_B = \{x \colon B(x) = 1\}$. Then we can get an isomorphism f from G/B onto G' satisfying

$$f(A/B) = A' = \eta (A)$$

<u>Proof</u> Let $f: G/B \rightarrow G'$, $f(xB) = \eta(x)$.

If aB = bB, then $B(b^{-1}a) = B(ab^{-1}) = 1$

Hence $ab^{-1} \in G_B = \ker \eta$

$$\eta(a) = \eta(ab^{-1}b)
= \eta(ab^{-1}) \eta(b)
= \eta(b)$$

Hence j is an one valued mapping

It is clear j is a homomorphism

If
$$\eta(x) = \eta(y)$$
, then $\eta(x) = \eta(xx^{-1}y) = \eta(x)\eta(x^{-1}y)$

so
$$\eta(x^{-1}y) = e$$
, $x^{-1}y \in \ker \eta = G_i$
 $B(x^{-1}y) = 1$, $xB = yB$

Hence f is an isomorphism from G/B onto G'.

For any $x' \in G'$

$$f(A/B)(x') = \sup A/B(yB) = \sup A(z)$$

$$\eta(y) = x' \qquad \eta(y) = x', zB = yB$$

$$=\sup A(z)=\ \eta\ (A)(x')=A'(x')$$

$$\eta\ (z)=x'$$
 Hence
$$f(A/B)=A'$$

Proposition 3.7 Let A, B be T-fuzzy groups of G. C a T-fuzzy normal of G. Then $A \cap B/C = A/C \cap B/C$.

References

- [1] Chen De Gang and Gu Xiang product structure of The fuzzy factor group: Fuzzy sets and systems 60(1993) 229-232
- [2] J. M. Authony and H. Sherwood, Fuzzy groups refined, J. Math. Anal Appl; 69(1979) 124-130
- [3] H. Sherwood, products of Fuzzy subgroups : Fuzzy sets and systems 11(1983) 79-89
- [4] M. S. Eroglu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroups; Fuzzy sets and systems 33(1989) 255-256
- [5] A. Rosenfeld, Fuzzy groups ; J. Math. Anal. 35(1971) 512-517
- [6] K. C. Gupta, Conormal fuzzy groups: Fuzzy sets and systems 56(1993) 317-322