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OPTIMAL CONTROL PROBLEM FOR

FUZZY DIFFERENTIAL EQUATIONS

YouNng-CHEL Kwun!, JAE-RoNG Chot!, HOE-YOUNG HA?, AND BU-YOUNG LEE!

1. Introduction

In this paper, we study the optimal control problem for the fuzzy differential system
using by method of the Huhn-Tucker theorem ([1], [3]).

2. Fuzzy optimal control

In this section, we set up a problem of the form, in which the domain of the functional
itself consists of uncertain objects.
For u,v € £7, put

1
pw) = [ [ 15u8,0) - 5.(8,0)Pdula)as,

where p(-) is unit Lebesgue measure on S™~!. In particular, define |jul| = pa(u, {0}).
Observe that if n=1 and [u]® = [u;(8),u.(3)], then

1 .
Jul2 = /0 (w(8)? + ur(8)?)dB.

Let a(t) = [ai(t),a-(t)] and f(t) = [fi(t), f+(t)] be & nonempty compact interval-
valued function on 0 < ¢t < T < oo with a;,a, continuous on [0,7]. Denote by
E1:p([0,T]) (resp.€*([0,T))) the class of continuous &1;,-valued (resp.£!-valued) func-
tions on [0,T1].

Consider the following fuzzy control system

(FCS) { 2(t) = a(t)z(t) + f(t) +u(t),

I(O) = Xy,
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where state z(-) and control u(-) in £([0,T]).
Our problem is to minimize

1 (7
M) ) =3 | Iuolra
0
subject to
(2) z(T) =q z*, 2t € EL

The function t — a(t)z(t) is Lipschitz ,

p2(az, ay) < tg%%]{laz(t)l, lar(t)}p2(z,y)-

Then (FCS) has a unique solution on [0,T] for a given continuous control u(-)([3]).
For given u, the trajectory z(t) is represented by

¢ t
z(t) = S(t)xo + / S(t—s)f(s)ds+ / S(t—s)u(s)ds, 0<t<T
0 0
where S(¢) is an interval-valued function
[S1(2), 5, (1)] = [elo 2%, efa ar)de],

Write [z(¢)]? = [z:1(8, t), z~(8, t)] with a like notation for u(t).
Let P be the positive orthant in R™. For a given o € I, defined P, C ETip bY

Po={u €, : [ C P}

Ifu e P,, write u o 0 and if u —p v >4 0 write u >, v, where —5 is Hukuhara
difference and u >, 0 if and only if v > 0 with necessity «. The positive dual cone of
Pa is the closed convex cone PP C £F,, defined by

PO ={pe E’.E;p :<u,p>>0forall u € P,},

where < u,p >= p(u) is the value at u € EL;p of the linear functional p : ELip — R, the
space of which is denoted by Egi‘p.

The significance of PP in our problem is that Lagrange multipliers for local op-
timization live in this dual cone. Local necessity coditions for (1) and (2) are more
accessible when there is some notation of differentiability of the uncertain constraint
functions G = z(t) —p, . Let II : 511‘1';) — C(I x 8% be the canonical embedding.
where S° = {—1,+1}. The fuzzy function G is said to be (Fréchet) differentiable at
o if the map G = I o G is Fréchet differentiable at €. A point & is said to be a
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regular point of the uncertain constraint G(§) >4 0 if G(§o) >« 0 and there is h € R

such that 6({0) + D@({o)h >a 0. Our constraint function be compact-interval valued,
G(€) = [Gi(€),G-(€)] and J : R® — R. The support function of G(¢) is

“Gl(f) if z= -1,

I{G(€))(z) = Sge)(z) = { +G.(&) if z=+1,

since $9 = {—1,+1}. Then [To g = Sg(,) is obviously differentiable if and only if G;, G,
are differentiable, and Sg;y(~1) = =VGi(£), Sg(¢)(+1) = VG (). The element of P
can be seen to be of the form lgAg+141A+1+1_1A_1, where [; are nonnegative constants,
the A; map S° to R and Ayi(—1) = A_1(+1) = 0, Ag1(+1) > 0, A_1(~1) < 0 and
Ao(=1) = Ag(+1) > 0. So each element of P& acts like a triple of nonnegative constants
(A-1, A0, A41),

A (Sae) () = (A-1 = 20)Gi(€) + (Mo + A41)Gr(§),

which is always nonneagtive since Ag (G’r(ﬁ) - Gl(ﬁ)) > 0. If & is a regular point which
is a solution to the constrained minimization, the Kuhn-Tucker conditions, namely that
there exists A* > 0 so that

VI (E)+ N (Sen()) = 0
A" (Sg(en) (1)) =0

can be written as

VJ(o)+(A-1 = 20)VGi(&) + (Mo + A+1)VG- () =0
()\_1 - Xo)Gl(go) + ()\0 + A_l)Gr(Eo) = 0.
for some nonnegative reals A_j, Ag, Ay+1. This extends quite naturally to a fuzzy real

number constraint with necessity a, as follows :
Define the function G : R* — &! by

[G(é)]a = [Gl(a’ 5)7 Gr(a, 5)]1

where for each § € R", G,(+,£) is monotone, nondecreasing in & and G (-, ) is monotone,
nondecresasin in « (since o < 3 implies that [G(£)]® C [G(£)]®. Suppose further that
Gi(a,-) and G,(a,-) are differentiable in £ for each a € I. Write, for each fixed o,

G(€) =4 0 if and only if [G(€)]* = 0.

Then, if £y is a regular point of the constraint G(£) =, 0 minimizing J(w), there exist
nonnegative real numbers A_j, A, Ay satisfying

VJ(w)+(A-1 = 2)VeGi(a, &) + (Ao + A1) VeGr(a, &) = 0
(A=1 = X0)Gi(a, €0) + (Mo + A41)Gr(a, &) = 0.
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Finally, we assume following statement
(F) For any given T > 0 and a € [0,1], there exists some interval valued M(T) =
[Mi(T), M-(T)] such that
/ S(T — s)f(s)ds,

[M(T))P = [M(T, B), M:(T, B)}.

Theorem . Under hypothesis (F), there exists fuzzy control ug(t) for the Fuzzy op-
timal control problem (1) and (2) such that

J(ug) =minJ(w)
T 1
=§%§/o /0 [Sz(T ~5)72 (.rzl(ﬂ) ~ 5(T)zg (8) - Mz(ﬁ))2
+ 5:(T - 5)72(2}(8) - (T3 (6) - Mr(m)"’} dgat

which is attained when

TS[(T—&‘)2 ’
rl Tzt - M,
La(s) - 2O=50 (gr 0_<f)>2 M. (B).
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