A Note On Fuzzy C-continuous Mappings

KUL HUR, JU RAN MOON AND JANG HYUN RYOU

Department of Mathematics, Wonkwang University 344-2, Shinyong Iksan Chonbuk, Korea 570-749 TEL:(0653)850-6190, FAX:(0653)52-5139 E-Mail:kulhur@wonnms.wonkwang.ac.kr

1. Preliminaries.

Throughout this paper, we will use the concept of a fuzzy topological space (or simply, fts) in the sence of Chang[3] and denote the collection of all the fuzzy open(resp. closed)sets in a fts X as FO(X)(resp. FC(X)).

Definition 1.1 [4]. Let (X, \mathcal{T}) be a fts. Then X is said to be \mathbf{T}_2 (or **Hausdorff**) if and only if for two distinct point x_{λ} and y_{μ} in X;

- (i) If $x \neq y$, then there exists open sets A and B in X such that $x_{\lambda} \in A$, $y_{\mu} \in B$ and $A_{\overline{q}}B$.
- (ii) If x = y and $\lambda < \mu$, then there exists open nbd A of x_{λ} and there exists open q-nbd B of y_{μ} such that $A_{\overline{q}}B$.

Definition 1.2 [6]. Let \mathfrak{B} be a collection of fuzy sets in a fts X. Then \mathfrak{B} is called a filter base if for any finite subset $\{U_i : i = 1, \ldots, n\}$ of \mathfrak{B} , $\bigcap_{i=1}^n U_i \neq \emptyset$.

Definition 1.3 [6]. A subset A of a fts (X,\mathcal{T}) is said to be **compact** if for each filter base \mathfrak{B} such that every finite intersection of members of \mathfrak{B} is q-coincident with A,

$$(\bigcap_{B\in \mathsf{B}} \ \mathrm{cl} \ B)\cap \mathbf{A} \neq \emptyset.$$

Theorem 1.4 [6]. A compact subset of a T2-space is closed.

Theorem 1.5 [6]. Let (X, \mathcal{T}) be a fts and $\{F_1, \dots, F_k\}$ a family of closed subsets of X. In order that $F = \bigcup_{i=1}^k F_i$ be compact it is sufficient that the space F_i be compact for $i = 1, 2, \dots, k$.

Typeset by AMS-TFX

Definition 1.6 [8]. Let (X, \mathcal{T}) be a fts and let A be subset of X. Then the family $\mathcal{T}_A = \{U \mid_A : U \in \mathcal{T}\}$ is called the **relative fuzzy topology** of \mathcal{T} to A. Such a fuzzy topological space (A, \mathcal{T}_A) is called a **subspace** of (X, \mathcal{T}) . A \mathcal{T}_A -open(resp. \mathcal{T}_A -closed) fuzzy set is also called a **relative open**(resp. closed) fuzzy set in A.

It is clear that \mathcal{T}_A is a fuzzy topology on A.

2. Basic properties of fuzzy c-continuous mapping.

Definition 2.1. Let X and Y be fuzzy topological spaces, let $f: X \longrightarrow Y$ be a mapping and let $x_{\lambda} \in F_p(X)$. Then f is said to be fuzzy c-continuous (or simple f-c-continuous) at x_{λ} if for each open nbd V of $f(x_{\lambda})$ and V^c is fuzzy compact in Y, there exists an open nbd U of x_{λ} such that $f(U) \subset V$. The mapping f is said to be fuzzy c-continuous (or simple, f-c-continuous)(on X) if f is f-c-continuous at each fuzzy point in X.

It is clear that if f is f-continuous, then f is f-c-continuous.

Theorem 2.2. Let X and Y be fuzzy topological spaces and let $f: X \longrightarrow Y$ be a mapping. Then the following statements are equivalent.

- (1) f is f-c-continuous.
- (2) If V is a fuzzy open set in Y with compact complement, then $f^{-1}(V) \in FO(X)$.

These statements are implied by

(3) If C is a fuzzy compact set in Y, then $f^{-1}(C) \in FC(X)$. And moreover, if Y is Hausdorff, then all the statements are equivalent.

Proof. Omitted.

Theorem 2.3. If $f: X \longrightarrow Y$ is f-c-continuous and A is a subset of X, then $f|_A: A \longrightarrow Y$ is f-c-continuous.

Proof. Omitted.

Theroem 2.4. If $f: X \longrightarrow Y$ is f-continuous and $g: Y \longrightarrow Z$ is f-c-continuous. Then $g \circ f: X \longrightarrow Z$ is f-c-continuous.

Proof. Omitted.

Theorem 2.5. Let X and Y be fuzzy topological space and let $X = A \cup B$, where $A, B \in FO(X)$ (resp. $A, B \in FC(X)$) such that A = S(A) and B = S(B). Suppose $f : X \longrightarrow Y$ is a mapping such that $f|_A$ and $f|_B$ are f-c-continuous. Then f is f-c-continuous.

Proof. First assume A,B \in FO(X). Let V \in FO(Y) such that V^c is fuzzy compact in Y. Since $f|_A$ and $f|_B$ are f-c-continuous. $(f|_A)^{-1}(V) \in$ FO(A) and $(f|_B)^{-1}(V) \in$ FO(B). Since A,B \in FO(X), $(f|_A)^{-1}(V)$ and $(f|_B)^{-1}(V) \in$ FO(X). On the other hand, $f^{-1}(V) = (f|_A)^{-1}(V) \cup (f|_B)^{-1}(V)$. So $f^{-1}(V) \in$ FO(X). Hence f is f-c-continuous.

Now assume that $A,B \in FC(X)$. Let $X_{\lambda} \in F_p(X)$ and let $V \in FO(Y)$ such that $f(x_{\lambda}) \in V$ and V^c is fuzzy compact in Y. Then either x_{λ} in $A \cap B$, $x_{\lambda} \in A$, $x_{\lambda} \overline{q} B$ or $x_{\lambda} \overline{q} A$, $x_{\lambda} \in B$.

Case 1: Suppose $x_{\lambda} \in A \cap B$. Since $f|_A$ is f-c-continuous, $f|_A$ is f-c-continuous at x_{λ} . Thus there exist $U \in FO(A)$ such that $x_{\lambda} \in U$ and $(f|_A)(U) \subset V$. Since $U \in FO(A)$, there exist $U' \in FO(X)$ such that $U = U' \cap A = U'|_A$. Since $f|_B$ is f-c-continuous, $f|_B$ is f-c-continuous at x_{λ} . Thus there exists $W \in FO(B)$ such that $x_{\lambda} \in W$ and $(f|_B)(W) \subset V$. Since $W \in FO(B)$, there exist $W' \in FO(X)$ such that $E = W' \cap B = W|_B$. Let $O = U' \cap W'$. Then $O \in FO(X)$, $x_{\lambda} \in O$, and $f(O) = f(U' \cap W') \subset f(U \cup W) = f(U) \cup f(W) \subset V$. Thus f is f-c-continuous at each x_{λ} in X. Hence f is continuous.

Case 2: Suppose $x_{\lambda} \in A$ and $x_{\lambda} \overline{q}B$. Since $f|_{A}$ is f-c-continuous at x_{λ} , there exists $U \in FO(A)$ such that $x_{\lambda} \in U$ and $(f|_{A})(U) \subset V$. Since $U \in FO(A)$, there exists $U' \in FO(X)$ such that $U = U' \cap A$. Let $W = U' \cap B^{c}$, Then clearly, $W \in FO(X)$. Since $x_{\lambda} \overline{q}B$, by theorem, $x_{\lambda} \in B^{c}$. Thus $x_{\lambda} \in U' \cap B^{c} = W$. Furthermore $f(W) \subset V$. So f is f-c-continuous at each x_{i} in X. Hence f is f-c-continuous. Case3: Suppose $x_{\lambda} \in B$ and $x_{\lambda} \overline{q}A$. This case follows exactly like case2.

Theorem 2.6. Let X be a fts and Y be a fuzzy Hausdorff space. If $f: X \longrightarrow Y$ is bijection and f-continuous, then $f^{-1}: Y \longrightarrow X$ is f-c-continuous.

Proof. Omitted.

3. Further Results.

Definition 3.1[7]. Let (X,\mathcal{T}) be a fts and let $\mathfrak{B} \subset T$. Then \mathfrak{B} is called a base for T if for each $U \in T$ either $U = \emptyset$ or there exists a subfamily \mathfrak{B}' of \mathfrak{B} such that $U = \bigcup_{R \in \mathcal{R}} B$.

Lemma 3.2. Let B be a family of fuzzy sets in a set X. Then B is a base for some fuzzy topology on X if and only if

- (1) $X = \bigcup_{B \in \mathcal{B}} B$. (2) if $B_1, B_2 \in \mathfrak{B}$ and $x_{\lambda} \in B_1 \cap B_2$, then there exists $B \in \mathfrak{B}$ such that $x_{\lambda} \in B \subset B_1 \cap B_2$.

Proof. Omitted.

Thenorem 3.3. Let (X,\mathcal{T}) be a fts and let \mathfrak{B} be the family of members of \mathcal{T} having compact complement. Then \mathfrak{B} is a base for a fuzzy topology T^* on X. Moreover $T^* \subset T$ and (X, T^*) is a fuzzy compact space. In this case, \mathcal{T}^* is called a fuzzy compact complement topology on X by \mathcal{T} .

Proof. Omitted.

Theorem 3.4. Let X and (Y,T) be any fuzzy topological space and let T^* be the fuzzy compact complement topology on Y by T. Let $f: X \longrightarrow (X, T)$ be any mapping $id: (Y,T) \longrightarrow (Y, T^*)$ the identity mapping and $f^*: X \longrightarrow (Y, T^*)$ the mapping defined by $f^*(x) = f(x)$ for all $x \in X$. Then;

- (1) $id \circ f = f^*$
- (2) f is f-c-continuous iff f* is f-continuous.
- (3) id is f-continuous and id^{-1} is f-c-continuous.

Proof. Omitted.

Theorem 3.5. Let $f: X \longrightarrow (Y, T)$ be f-c-continuous. If f^* is f-closed(resp. f-open). Then f is f-closed(resp. f-open).

Proof. Omitted.

REFERENCES

- 1. Y. S. Ahn, Various Weaker Forms of Fuzzy Continuous Mappings, Thesis of Ph.D (1996).
- 2. K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy continuity, J.Math. Anal. Appl. 82 (1981), 14
- 3. C. L. Chang, Fuzzy topological space, J.Math.Anal. Appl. 24 (1968), 182 402.
- 4. Z. Deng, Fuzzy pseudo-metric spaces, J.Math. anal. Appl. 86 (1980), 74 95.
- 5. S. Ganguly and S.Saha, On Separation axiom and Ti-fuzzy continuity, Fuzzy sets and systems 16 (1985), 265 275.
- _, A note on compactness in fuzzy setting, Fuzzy sts and systems 34 (1990), 117 124.
- 7. Karl R. Gentry and Hughes B. Hoyle, (III), C-continuous functions, the Yokohama Math. Jour 18-2 (1970), 71 76.
- 8. Pu Pac-Ming and Liu Ying-Ming, Fuzzy Topology(1), J.Math. Anal. Appl 76 (1980), 571 599.
- 9. C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl 45 (1974), 512 521.