FUZZY r-PRECONTINUOUS MAPS

EUN PYO LEE AND SEOK JONG LEE

Department of Mathematics, Seonam University, Namwon, Korea Department of Mathematics, Chungbuk National University, Cheongju, Korea

ABSTRACT

We introduce new concepts of fuzzy r-preopen(r-preclosed) sets and fuzzy r-precontinuous(r-preopen, r-preclosed) maps as generalizations of the concepts of fuzzy preopen and fuzzy precontinuous of Shahna [7].

1. Preliminaries

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a Chang's fuzzy topological space.

A fuzzy topology on X is a map $\mathcal{T}:I^X\to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$,
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$,
- (3) $\mathcal{T}(\bigvee \mu_i) \geq \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

For $r \in I_0$, we call μ a fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$ and μ a fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, \mathcal{T}(\rho^c) \geq r \}$$

and the fuzzy r-interior is defined by

$$\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \ge \rho, \mathcal{T}(\rho) \ge r \}.$$

DEFINITION 1.1 ([5]). Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y,
- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X,
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

2. Fuzzy r-preopen sets

DEFINITION 2.1. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-preopen if $\mu \leq \operatorname{int}(\operatorname{cl}(\mu, r))$,
- (2) fuzzy r-preclosed if $cl(int(\mu, r)) \leq \mu$.

It is clear that a fuzzy set μ is fuzzy r-preopen if and only if μ^c is fuzzy r-preclosed.

REMARK 2.2. It is obvious that every fuzzy r-open set (r-closed) is a fuzzy r-preopen (r-preclosed) set. But the converse need not be true. Also, the intersection (union) of any two fuzzy r-preopen (r-preclosed) sets need not be fuzzy r-preopen (r-preclosed).

THEOREM 2.3. (1) Any union of fuzzy r-preopen sets is fuzzy r-preopen.

(2) Any intersection of fuzzy r-preclosed sets is fuzzy r-preclosed.

DEFINITION 2.4. Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-preclosure is defined by

$$pcl(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \le \rho, \ \rho \text{ is fuzzy } r\text{-preclosed} \}$$

and the fuzzy r-preinterior is defined by

$$pint(\mu, r) = \bigvee \{ \rho \in I^X : \mu \ge \rho, \ \rho \text{ is fuzzy } r\text{-preopen} \}.$$

Obviously $\operatorname{pcl}(\mu,r)$ is the smallest fuzzy r-preclosed set which contains μ and $\operatorname{pint}(\mu,r)$ is the greatest fuzzy r-preopen set which contained in μ . Also, $\operatorname{pcl}(\mu,r)=\mu$ for any fuzzy r-preclosed set μ and $\operatorname{pint}(\mu,r)=\mu$ for any fuzzy r-preopen set μ . Also we have

$$\operatorname{int}(\mu, r) \leq \operatorname{pint}(\mu, r) \leq \mu \leq \operatorname{pcl}(\mu, r) \leq \operatorname{cl}(\mu, r).$$

Moreover, we have the following results:

- (1) $\operatorname{pint}(\tilde{0}, r) = \tilde{0}, \operatorname{pint}(\tilde{1}, r) = \tilde{1}; \operatorname{pcl}(\tilde{0}, r) = \tilde{0}, \operatorname{pcl}(\tilde{1}, r) = \tilde{1}.$
- (2) $pint(\mu, r) \le \mu$; $pcl(\mu, r) \ge \mu$.
- $(3) \ \operatorname{pint}(\mu \wedge \rho, r) \leq \operatorname{pint}(\mu, r) \wedge \operatorname{pint}(\rho, r); \ \operatorname{pcl}(\mu \vee \rho, r) \geq \operatorname{pcl}(\mu, r) \vee \operatorname{pcl}(\rho, r).$
- (4) $\operatorname{pint}(\operatorname{pint}(\mu, r), r) = \operatorname{pint}(\mu, r); \operatorname{pcl}(\operatorname{pcl}(\mu, r), r) = \operatorname{pcl}(\mu, r).$

Theorem 2.5. For a fuzzy set μ of a fuzzy topological space X and $r \in I_0$,

- (1) $\operatorname{pint}(\mu, r)^c = \operatorname{pcl}(\mu^c, r)$.
- (2) $\operatorname{pcl}(\mu, r)^c = \operatorname{pint}(\mu^c, r)$.

THEOREM 2.6. For a fuzzy set μ of a fuzzy topological space X and $r \in I_0$,

- (1) $\operatorname{pint}(\operatorname{pcl}(\operatorname{pint}(\operatorname{pcl}(\mu,r),r),r),r) = \operatorname{pint}(\operatorname{pcl}(\mu,r),r).$
- $(2) \ \operatorname{pcl}(\operatorname{pint}(\operatorname{pcl}(\operatorname{pint}(\mu,r),r),r),r) = \operatorname{pcl}(\operatorname{pint}(\mu,r),r).$

THEOREM 2.7. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy r-preopen (r-preclosed) in (X, \mathcal{T}) if and only if μ is fuzzy preopen (preclosed) set in (X, \mathcal{T}_r) .

THEOREM 2.8. Let μ be a fuzzy set of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is fuzzy preopen (preclosed) in (X,T) if and only if μ is fuzzy r-preopen (r-preclosed) in (X,T^r) .

3. Fuzzy r-precontinuous maps

DEFINITION 3.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-precontinuous map if $f^{-1}(\mu)$ is a fuzzy r-preopen set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-preclosed set of X for each fuzzy r-closed set μ of Y,
- (2) a fuzzy r-preopen map if $f(\rho)$ is a fuzzy r-preopen set of Y for each fuzzy r-open set ρ of X,
- (3) a fuzzy r-preclosed map if $f(\rho)$ is a fuzzy r-preclosed set of Y for each fuzzy r-closed set ρ of X.

REMARK 3.2. It is obvious that every fuzzy r-continuous (r-open, r-closed) map is also a fuzzy r-precontinuous (r-preopen, r-preclosed) map for each $r \in I_0$. But the converse need not be true.

Now, we characterize fuzzy r-precontinuous by fuzzy r-closure and fuzzy r-interior.

THEOREM 3.3. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-precontinuous map.
- (2) $\operatorname{cl}(\operatorname{int}(f^{-1}(\mu), r), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ of Y.
- (3) $f(\operatorname{cl}(\operatorname{int}(\rho,r),r)) \leq \operatorname{cl}(f(\rho),r)$ for each fuzzy set ρ of X.

Also, we characterize fuzzy r-precontinuous by fuzzy r-preclosure and fuzzy r-preinterior.

THEOREM 3.4. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-precontinuous map.
- (2) $f(pcl(\rho, r)) \leq cl(f(\rho), r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{pcl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ of Y.
- (4) $f^{-1}(\operatorname{int}(\mu, r)) \leq \operatorname{pint}(f^{-1}(\mu), r)$ for each fuzzy set μ of Y.

THEOREM 3.5. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a bijection and $r \in I_0$. Then f is a fuzzy r-precontinuous map if and only if $\operatorname{int}(f(\rho),r) \leq f(\operatorname{pint}(\rho,r))$ for each fuzzy set ρ of X.

THEOREM 3.6. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-preopen map.
- (2) $f(\operatorname{int}(\rho, r) \leq \operatorname{pint}(f(\rho), r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{int}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{pint}(\mu, r))$ for each fuzzy set μ of Y.

THEOREM 3.7. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-preclosed map.
- (2) $pcl(f(\rho), r) \leq f(cl(\rho, r))$ for each fuzzy set ρ of X.

THEOREM 3.8. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a bijection and $r\in I_0$. Then f is a fuzzy r-preclosed map if and only if $f^{-1}(\operatorname{pcl}(\mu,r))\leq \operatorname{cl}(f^{-1}(\mu),r)$ for each fuzzy set μ of Y.

THEOREM 3.9. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r \in I_0$. Then f is fuzzy r-precontinuous(r-preopen, r-preclosed) if and only if $f:(X,\mathcal{T}_r) \to (Y,\mathcal{U}_r)$ is fuzzy precontinuous(preopen, preclosed).

THEOREM 3.10. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to another Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy precontinuous (preopen, preclosed) if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy r-precontinuous (r-preopen, r-preclosed).

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [5] S. J. Lee and E. P. Lee, Fuzzy r-semicontinuous sets and fuzzy r-semicontinuous maps, Proc. of KFIS Spring Conference'97 7 (1997), 29-32.
- [6] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [7] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308.