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ABSTRACT

We introduce new concepts of fuzzy r-preopen(r-preclosed) sets and fuzzy -
precontinuous(r-preopen, r-preclosed) maps as generalizations of the concepts of
fuzzy preopen and fuzzy precontinuous of Shahna [7].

1. PRELIMINARIES

A Chang’s fuzzy topology on X is a family T of fuzzy sets in X which satisfies
the following properties:
(1) 0,1€T.
(2) If py,pug € T then py Apg €T
(3) If p; € T for each 4, then \/ pu; € T
The pair (X, T) is called a Chang’s fuzzy topological space.
A fuzzy topology on X is a map T : [ X I which satisfies the following
properties:
@ 7O =7T() =1,
(2) T (1 Apa) > T (p1) AT (p2),
(3) T(Vua) 2 AT ()
The pair (X, T) is called a fuzzy topological space.
For r € Iy, we call u a fuzzy r-open set of X if T(u) > r and p a fuzzy r-closed
set of X if T(uc) > r.
Let (X, 7T) be a fuzzy topological space. For each r € Iy and for each u € Ix,
the fuzzy r-closure is defined by

cl(p,r) = MpeIX : u<p,T(p%) 21}
and the fuzzy r-interior is defined by

int(p,r) =V{peIX :p>p,T(p) 27}

DEFINITION 1.1 ([5]). Let f: (X,T) — (Y,U) be a map from a fuzzy topo-
logical space X to another fuzzy topological space Y and r € Iy. Then f is called

(1) a fuzzy r-continuous map if f~!(u) is a fuzzy r-open set of X for each fuzzy
r-cpen set pu of Y,

(2) a fuzzy r-open map if f(u) is a fuzzy r-open set of Y for each fuzzy r-open
set u of X,

(3) a fuzzy r-closed map if f(u) is a fuzzy r-closed set of Y for each fuzzy
r-closed set p of X.
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2. Fuzzy r-PREOPEN SETS
DEFINITION 2.1. Let u be a fuzzy set of a fuzzy topological space (X,7) and
r € Iy. Then p is said to be

(1) fuzzy r-preopen if p < int(cl(u,r)),
(2) fuzzy r-preclosed if cl(int(u,r)) < p.

It is clear that a fuzzy set u is fuzzy r-preopen if and only if u¢ is fuzzy r-
preclosed.

REMARK 2.2. It is obvious that every fuzzy r-open set (r-closed) is a fuzzy r-
preopen (r-preclosed) set. But the converse need not be true. Also, the intersection
(union) of any two fuzzy r-preopen (r-preclosed) sets need not be fuzzy r-preopen
(r-preclosed).

THEOREM 2.3. (1) Any union of fuzzy r-preopen sets is fuzzy r-preopen.
(2) Any intersection of fuzzy r-preclosed sets is fuzzy r-preclosed.

DEFINITION 2.4. Let (X,7T) be a fuzzy topological space. For each r € Iy and
for each p € IX, the fuzzy r-preclosure is defined by

pcl(p, ) = A{p € I : u < p, pis fuzzy r-preclosed}
and the fuzzy r-preinterior is defined by

pint(u,7) = V{p € I* : u > p, p is fuzzy r-preopen}.

Obviously pcl(p,r) is the smallest fuzzy r-preclosed set which contains y and
pint(u, r) is the greatest fuzzy r-preopen set which contained in y. Also, pel(u, ) =
u for any fuzzy r-preclosed set y and pint(u,r) = u for any fuzzy r-preopen set .
Also we have

int(u,7) < pint(u,7) < p < pel(u,7) < cl(p, 7).

Moreover, we have the following results:
(1) pint(0,r) = 0, pint(1,7) = 1; pcl(0,r) = 0,pcl(1,r) = 1.
(2) pint(p,7) < p; pel(p,r) > p.
(3) pint(p A p,7) < pint(u,r) Apint(p,7); pel(uV p,7) 2 pel(u,r) V pel(p, 7).
(4) pint(pint(u,7),7) = pint(p,7); pel(pcl(u,7),7) = pcl(p, 7).
THEOREM 2.5. For a fuzzy set p of a fuzzy lopological . space X and r € Iy,
(1) pint(u,7)¢ = pel(p®, 7).
(2) pel(p,r)¢ = pint(u, 7).
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THEOREM 2.6. For a fuzzy set u of a fuzzy topological space X and r € Iy,

(1) pint(pcl(pint(pcl(p,r),7),7),7) = pint(pcl(p,r), 7).
(2) pel(pint(pcl(pint(p,r),r),7),r) = pcl(pint(g,7),7).

THEOREM 2.7. Let u be a fuzzy set of a fuzzy topological space (X,T) and
r € Iy. Then u is fuzzy r-preopen (r-preclosed) in (X, T) if and only if p is fuzzy
preopen (preclosed) set in (X, T,).

THEOREM 2.8. Let u be a fuzzy set of a Chang’s fuzzy topological space (X, T)
and r € Iy. Then p is fuzzy preopen (preclosed) in (X, T) if and only if p is fuzzy
r-preopen (r-preclosed) in (X, T").

3. FUzzy »-PRECONTINUOUS MAPS

DEFINITION 3.1. Let f: (X,T) — (Y,U) be a map from a fuzzy topological
space X to another fuzzy topological space Y and r € /5. Then f is called

(1) a fuzzy r-precontinuous map if f~!(u) is a fuzzy r-preopen set of X for each
fuzzy r-open set u of Y, or equivalently, f~!(u) is a fuzzy r-preclosed set of X for
each fuzzy r-closed set yu of Y, v

(2) a fuzzy r-preopen map if f(p) is a fuzzy r-preopen set of Y for each fuzzy
r-open set p of X,

(3) a fuzzy r-preclosed map if f(p) is a fuzzy r-preclosed set of Y for each fuzzy
r-closed set p of X.

REMARK 3.2. It is obvious that every fuzzy r-continuous (r-open, r-closed)
map is also a fuzzy r-precontinuous (r-preopen, r-preclosed) map for each r € Ij.
But the converse need not be true.

Now, we characterize fuzzy r-precontinuous by fuzzy r-closure and fuzzy r-
interior.

THEOREM 3.3. Let f : (X,T) — (Y,U) be a map and r € Iy. Then the
following statements are equivalent:

(1) f is a fuzzy r-precontinuous map.
(2) cl(int(f~1(w),r),r) < f1(cl(u,T)) for each fuzzy set u of Y.
(3) flcl(int(p,7), 7)) < cl(f(p),r) for each fuzzy set p of X.

Also, we characterize fuzzy r-precontinuous by fuzzy r-preclosure and fuzzy
r-preinterior.

THEOREM 3.4. Let f : (X,T) — (Y,U) be a map and r € Iy. Then the
following statements are equivalent:

(1) f is a fuzzy r-precontinuous map.

(2) f(pcl(p, 7)) < cl(f(p),r) for each fuzzy set p of X.

(3) pel(f 1 (w),7) < f=Y(cl(n,)) for each fuzzy set p of Y.

(4) f~Y(int(u,7)) < pint(f~Y(u),r) for each fuzzy set u of Y.
75



THEOREM 3.5. Let f: (X,T) — (Y,U) be a bijection and r € Iy. Then f is a
fuzzy r-precontinuous map if and only if int(f(p),r) < f(pint(p,r)) for each fuzzy
set p of X.

THEOREM 3.6. Let f : (X,T) — (Y,U) be a map and r € I,. Then the
following statements are equivalent:

(1) f is a fuzzy r-preopen map.
(2) f(int(p,r) < pint(f(p),r) for each fuzzy set p of X.
(3) int(f~Y(w),r) < f~ (pint(p, 1)) for each fuzzy set u of Y.

THEOREM 3.7. Let f : (X,T) — (Y,U) be a map and r € Iy. Then the
following statements are equivalent:

(1) f ts a fuzzy r-preclosed map.
(2) pel(f(p),r) < f(cl(p,T)) for each fuzzy set p of X.

THEOREM 3.8. Let f: (X,T) — (Y,U) be a bijection and r € Iy. Then f is a
fuzzy r-preclosed map if and only if f~1(pcl(u,m)) < cl(f (), r) for each fuzzy
set u of Y.

THEOREM 3.9. Let f : (X,T) — (Y,U) be a map from a fuzzy topological
space X to another fuzzy topological space Y and r € Iy. Then [ is fuzzy r-
precontinuous(r-preopen, r-preclosed) if and only if f : (X, T,) — (Y,U,) is fuzzy
precontinuous(preopen, preclosed).

THEOREM 3.10. Let f: (X,T) — (Y,U) be a map from a Chang’s fuzzy topo-
logical space X to another Chang’s fuzzy topological space Y and r € Iy. Then f
is fuzzy precontinuous (preopen, preclosed) if and only if f: (X, T") — (Y,U") is
fuzzy r-precontinuous (r-preopen, r-preclosed).
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