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Abstract

We prove a uniform strong law of large numbers for sequences of fuzzy random vari-

ables.

1. Introduction

Kruse [7] proved a strong law of large numbers for independent and identically
distributed fuzzy random variables and Klement, Puri and Ralescu [6] obtained a
strong law of large numbers and some other limit theorems. Miyakoshi and Shimbo
[9] obtained a strong law of large numbers for independent fuzzy random variables and
they [10] also generalized Birkhoff's ergodic theorem to fuzzy random variables. The
present paper is concerned with the investigation of a limit theorem usually refered to
as the uniform strong law of large numbers in the presence of fuzzyness. Our results
generalize that of Bass and Pyke|2].

2. Preliminaries :

Assume that R is the set of real numbers. Let C(R} = {4 C R: A compact}
and K(R) = {4 € C(R): A convex}. The space C(R)(A(R)) has a linear structure
induced by the operations A+ B={a+b:a€ A, b€ B} and XA={)a:a€ A}
for A,B € C(R)(K(R)), A € R. The Hausdorff distance between two sets 4, B of
C(R) is defined as

du(4,B) = max{:lelg inf |la - bll,fgg inf [la — bit}.

An extension of C(R) is obtained by defining the space F(R) of fuzzy set u : R — [0, 1]
satisfying

(1) u is upper semi-continuous,

(2) {# € R:u(z) > a} is compact for each a.

(3) {r€R:u(z)=1}#0.
Furthermore, a subspace of F(R) denoted by F.(R). is defined by requiring

(4) {r € R:u(z) > a} to be compact and convex for each a > 0.
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For each such fuzzy set u, we denote by Ly(u) = {2 € R : u(z) > a}, a € [0,1] its
a—level set. The space F(R) extends K(R) in the sense that for each A € K(R), its
characteristic function xy 4 € F(R). Now we define generalized metric on F(R)

d(u,v)=/; dy(Lo(u), La(v)))da.

Note that (F(R),d) is complete(Puri and Ralescu [12]) and separable(Klement, Puri
and Ralescu[6]). The norm |ju|| of a fuzzy set u € F(R) is defined by |jul| =
d(u, Itoy) = sup || La(u)ll-

If (2, P) is a probability space, a random interval, as a generalization of a ran-
dom variable, is defined as a Borel measurable function X : Q@ — (C(R),dy).
The expected value EX(Aumann{l]; Chow and Teicher[3]) is defined by EX =
{E¢ld : & — R, E|¢] < 00, o¢(w) € X(w)a.e.}. Note that if E||X|| < oo where
IX|l(w) = supsex(w)lal, then E(X) € K(R). A fuzzy random variable is a Borel
measurable function X : Q@ — (F(R),d) such that every a € (0, 1], the random vari-
able X4 : @ — C(R) defined by X,(u) = {z € R: X(w)(z) > a} is a compact set in
R. In defining the expected value of a fuzzy random variable X, theorem 3.1 in Puri
and Ralescu [13] assures that Lo (E(coX)) = ELy(coX),0 < a < 1. It follows that
E||La(X)|| < oo implies EX € F.(R).

3. Main Theorems

Let J = {1,2,---,}4 and let {X; : j € J} be a family of independent identically
distributed random intervals (or fuzzy random variables) with common expected value
EX. Let C C [0,00)¢ with d positive integer be Borel measurable and let |C| denote
the Lebesgue measure of C. Define S(C') = Y jec Xj to be the partial sum of random
intervals (or fuzzy random variables). )

Given a set B C [0,1]¢, let nB = {nz : z € B} and B(§) = {x : p(x,0B) < 6} be
the §-annulus of OB, where p(-, -) is the Euclidean distance and @B is the boundary of
B. Let |B| denote the Lebesgue measure of B. Let A be a family of Borel measurable
subsets of [0,1]?. Define r(§) = sup,c 4 |4(6)|. We say that A satisfies the smooth
boundary condition(SBC) when r(8) — 0 as n — oo. Under SBC on A, we have the
following uniform strong law of large numbers for fuzzy random variables:

Theorem 1. Let {X; : j € J} be a family of independent identically distributed ran-
dom intervals with EX; = {1, pu2]. Suppose A is a collection of Lebesgue measurable
subsets of [0,1]¢ such that r(§) = sup 4¢4 |A(6)] — 0 as § — 0, then

S(nA,
sup dy ( (nd ),QA][,ul,uz]> -0 as.
A€A n

as n — oo where dy is the Hausdorff metric on subsets of [0, 1]%.



Theorem 2. Let {X; : j € J} be a family of independent identically distributed
fuzzy random variables with common expected value EX. Suppose A is a collection
of Lebesgue measurable subsets of [0.1)? such that r(6) = supc4 |A(8)] — O as
6 — 0, then

sup d (S(n A) ]A]EX) —0 as.
A€EA

as n — oo where d is the generalized metric induced from the Hausdorff metric dg
on subsets of [0,1]¢.

Proof of theorem 2. For each a € [0, 1], the sequence {Xj,} satisfies theorem
1. To prove theorem 2 what we have to show is the following:

1
sup/ du (La <§—(£—4—) |A|Lq (EX)) da — 0 a.s.
AeAJo n

as n — 00. To do this first we need to show that for a fixed rectangle A.

/ol au (La (5@—) IIAlLa(EX)) da =0 as.

as n — 20. Under the set-ups as in section 3, Klement, Puri and Ralescu[6]’s strong
laws implies, n=¢S(n(0,x]) = ”””:ﬁ“"‘]) ,,(S,(r',’,(fzo"x]) — [(0,x]|[EX;. If A can be ob-
tained by a finite number of unions and differences of rectangles of the form (0, x|, then
by linearity we have n=4S(nd) — |4|EX a.s. Now let v, = max{E|s1al, E|s24]}
and T;o(4) = ZjeA Isfa|, for i = 1.2 and a € (0, 1]. Then, for m fixed

limsup d(n~%S(nA),|A|EX) < limsup n~%d(S(nA).S(nR,(A)))
n—o>c A€A n—oo AEA

+ limsup d(n™?S(nR,(A)).|R,L,(A)|EX)
n—oc AEA

+ limsup d(|A|EX, |R5(A)EX)
n—oc AEA

=L+ L+ 1.
Firstly, with some calculation we have
< l|suppEX||r(d*/*m)

Secondly

I; = limsup d(n™%S(nR,(4)),|R.(A)EX)
n—oo,A€EA
< limsup d(n~?S(nB).|B|EX)
n—oo,BER,

< limsup max d(n~?S(nB),|B|EX)
n—oo BER,

1 .
= lim sup max / du(La(n™S(nB)). Lo(|B|EX))da
n—oo BE€ER. Jo

1

S/ limsup max dy(La(n~%S(nB)). La(|B|EX))d
0 n—oo BER

=0 as.



where we used the fact that fR,, < oo and every set B € R, can be obtained by a
finite number of unions and differences of rectangles of the form (0, x].
Now

1 , .
AS0uA) SR = [(max{ Y gl Y Jdalde,
o JE€(nRYL(A)\nR,(A)) JE(MRYL(A)\nRL(A))
Therefore
1 , _
I < limsup n_d/ max{ Z s34 Z |s3,]}da
0

oo, A J€(nRE(A\nR(4)) J€(nRE(A\nR(A))

1 _ _
< / limsup n~¢max{ Z |89 )5 Z |53} da
0

noreoAgA JEMRE(ANRRZ(A)  jE(nRE(A\RRA(A))
< |lsupptX||r(d*/?/m)  as.

where we used the fact that §R% was finite. Hence summing up, we have

limsup d(n"%S(nd),|A|EX) < 2||suppX|r(d'/?/m) as.
n—oc AEA

Letting m — oo concludes the proof.
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