[1~15]

CBE growth and doping of InP and InGaAs lattice-matched to InP for high-speed electronic device application

Sung Wung Park, Jong-In Song, Deok Ha Woo*, Suk Geun Choi*, Jong Wook Kim*, Joon Woo Lee**

High-speed IC Lab., Dept. of Information and Communications, Kwangju Institute of Science and Technology

*Div. Of Information and Electronics, Korea Institute of Science and Technology

** Photonic Devices Lab., Hyundai Electronics Industries Co., Ltd.

InP and related compound semiconductor materials are attractive for high-speed electronic device application, due to their excellent electrical properties compared with those of GaAs and related materials. InP-based devices including high electron mobility transistor (HEMT) [1] and heterojunction bipolar transistor (HBT) [2] having maximum cut-off frequencies over 200 GHz have already been reported.

Growth and doping of InP and In_{.53}Ga_{.47}As were studied using a V80H chemical beam epitaxy (CBE) system. Cracked PH₃ and AsH₃ were used for group V elements and TEGa and TMIn were used for group III elements. Solid Si source was used for n-type doping and CBr₄ and solid Be were used for p-type doping. InP was grown for temperatures ranging from 480 °C to 520 °C with different growth rates and V/III ratios. InGaAs lattice-matched to InP was grown for temperatures ranging from 470 °C to 520 °C with different V/III ratios. Doping of InP with Si and Be and InGaAs with Si and CBr₄ was investigated.

In_xGa_{1-x}As layers lattice-matched to InP within 150 arcsec measured by a double x-tal x-ray can be routinely grown. The good morphology of the grown layers was indicated by rms roughness of 3.2 Å and 1.7 Å measured by an AFM for undoped InP and InGaAs, respectively. A photoluminescence data measured at 9K for an undoped InGaAs sample grown at 500 °C showed a full width at half maximum (FWHM) of 4.8 meV. The background doping and mobility of the InGaAs layer measured by a Hall measurement were 3.4x10¹⁵/cm³ (n-type) and 6,300 cm²/v·sec, respectively. Preliminary doping study shows that InP can be doped as high as 3x10¹⁹/cm³ (n-type) and 4x10¹⁸/cm³ (p-type) with Si and Be, respectively. InGaAs can be doped as high as 4x10¹⁹/cm³ (n-type) and >1x10¹⁹/cm³ (p-type) with Si and CBr₄, respectively. These doping levels are close to the highest yet reported [3].

An experimental carbon-doped base InP/InGaAs HBT structure was grown and processed. Measurements show good breakdown characteristics of emitter-base and base-collector junctions and a common-emitter ac current gain of 70.

In conclusion, growth of high quality InP and InGaAs lattice-matched to InP and their doping by CBE were studied. The preliminary results demonstrate the potential of CBE for achieving high-quality, ultrahigh doping InP and InGaAs layers suitable for high-speed electronic device applications.

References

- [1] L.D Nguyen, IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, 1992.
- [2] J.-I. Song, et al., IEEE DRC Technical Digest, 1994.
- [3] Panish, et al, Gas Source MBE, Springer-Verlag, 1993.

Acknowledgments

This work was supported in part by Korean Ministry of Information and Communications and Ministry of Education through Inter-University Semiconductor Research Center (ISRC96-E-3013) in Seoul National University.

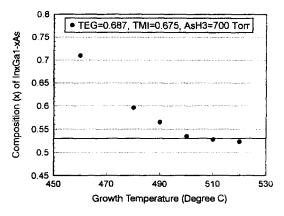


Fig. 1. Estimated dependence of In composition (x) of $In_xGa_{1-x}As$ on growth temperature. Pressures of TMIn, TEGa, and AsH_3 are assumed to be constant at 0.675, 0.687, and 700 Torr.

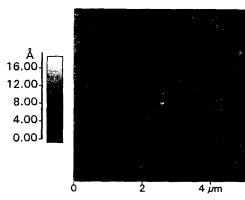


Fig. 2. AFM image of undoped InGaAs.

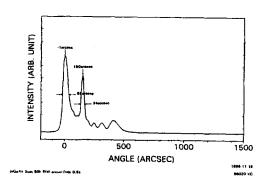


Fig. 3. X-ray rocking curve of undoped InGaAs layer grown at 500 $^{\circ}$ C.

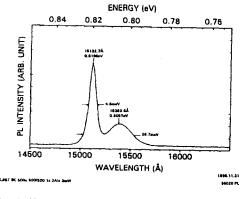


Fig. 4. 9K PL spectra for an undoped InGaAs layer grown at 500 °C.

	1E+20	1240	1200	1241	119	• 11	86 1	114	1070	1943	1000	977 (Degree C	:)
	İ		X	V	_			1-	#	#	#	=	
	1E+19			S	¥			ŧ					
5					Z	\leq		#=	#	=	≢	3	
Nd-Na (1/cm3)	1E+18					A					L		
Ž						_		₹≡		丰			
_	1E+17		\pm	\dashv	\neg		Ė	1	+	_	Ŧ	7	
	16.17											=	
	- 1	_	=		\exists		_	<u> </u>				∃	
	1E+16 }	6 0 E	2 0.64	0.6			7 0	ļ				4	
	•	0.0	0.04	V.U		000/T			J. / 4	U.76 I	0.78	0.8	
			•	9600) = 9		_	As)				

Fig. 5. Electron concentration of Si-doped InP and InGaAs grown at 500 °C as a function of Si cell temperature

Сар	150 nm	n++ InGaAs (Si)
Emitter	250 nm	n++ InP (Si)
Emitter	100 nm	n InP (Si)
Spacer	5 nm	und InGaAs
Base	70 nm	p++ InGaAs (C)
Collector	600 nm	n- InGaAs (Si)
Subcollector	500 nm	n++ InGaAs (Si)
	S.I. InP St	ubstrate

Fig. 6. Structure of CBE-grown carbon-doped base InP/InGaAs HBT.