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A Generalization of the Trapezoidal Rule for Dynamic Analysis

Jin Yeon Cho, Seung Jo Kim

ABSTRACT

In this work, the constant average acceleration, which is a fundamental feature of the trapezoidal rule,
is investigated and generalized. Using the generalization of average acceleration concept, a higher order
accurate and unconditionally stable time-integration method is developed. The linear approximation of
the present method is exactly the same as the famous trapezoidal rule.

To observe the accuracy and stability of the method, several numerical tests are performed and the
results are compared with the results from the trapezoidal rule and the exact solution. From the numerical
tests, it has been known that the present method has a higher order accuracy and unconditional stability.

l. Introduction

Over many years, numerous numerical time-
integration algorithms[1-7] have been developed for
structural dynamics. These methods have different
characteristics of accuracy, stability and numerical
dissipation[8]. Each of these numerical time-integration
methods has its specialty for a specific problem. However,
for general purposes, the Newmark family algorithm is
one of the most widely used methods in structural
dynamics. As special cases, it contains many well-known
and widely used methods. The most famous form of the
Newmark family is the trapezoidal rule which was
proposed originally as the constant average acceleration
method by Newmark[1]. It was proved by Dahlquist[9]
that the trapezoidal rule has the smallest error in the
unconditionally stable linear multi-step methods, having
the second-order accuracy. In this work, the trapezoidal
rule is generalized to develop the higher order accurate
and unconditionally stable time-integration method.

Il. Theory

1. Generalized Averages for Acceleration and Velocity

The linear space P'[z,,t, ] of vector valued function
p(&) = (p,(), P, (1), -+ p, ()" elements of which are real
polynomial of degree less than or equal to o defined over
an interval ¢, < <t ,, with the inner product defined as

n+l
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(Pa) = [P0 () M)

is an inner product space. Since P.[t,,,.,] is a finite

dimensional linear space, it is complete[10]. Hence, it is a
Hilbert space. Moreover, it can be easily shown that
PHt,,t,.,] for 0<i<o is a closed linear subspace of

Pi[t,.t,.,]. Thus the projection theorem[11] can be

n>

applied. From the projection theorem, the closest vector
Pty e Pr{t,,t,.,] to the vector p(¢) € Pi[¢,.1,,,] can be
found. It corresponds to the orthogonal projection of p(z),
where the range space of orthogonal projection operator is
P! {t,.t,,]. The closest vector P(r) is obtained as

n?

follows.

For the given p(t) e P'[t .t,.,].
Find p(t) € P [t,.t,.,] such that
(p-P.@)=0. forallq(t) € BL[t,.1,.,] (2)

Actually, the constant average of a vector valued linear
function(k-tuple of linear polynomials) can be understood
mathematically to be the vector valued constant
polynomial (k—tuple of constant polynomials) which is the
closest to the vector valued linear function in the constant
polynomial space P}[t,,t,,, |- It is also considered as the
orthogonal projection of the linear function vector to
constant polynomial space Ff[t,.t,,,]. Similarly, the
vector valued higher order polynomial functions(k—tuple

of higher order polynomials) can be averaged to one-
degree lower order polynomial function in the above
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sense. By the same way, the averages of higher order
acceleration and velocity can be derived.

The a-th order acceleration vector defined on an
interval ¢ <1<y, =(t, +Ar) is written in the following

n+l

form by using Lagrange interpolation functions.
a(n) = v (D, 3)
i=0

where At = (¢, —t,) is time step and n+ifa denotes
the time of J-th inner time step (f, <f,,, <f,.,, <<
tyia-tja < 1o ). The inner time step (z ~lyra) is

Atjo forall 0<i<(a —1).
To find the averaged value a(¢)eP’ [t,.t,.,] for

n+(i+1)a

a(t) € P(t,.t,,,]1, it is sufficient to solve the following
relation.

(a-5,q)=0, forall q(t) eP[1,.t,,] (4
It is equivalent to finding the polynomial vector
a(t) € P \[¢,.1,.,] such that

(1) =2 7,03, ®)
i=0
where y,(r) is the polynomial of a —1 degree and
satisfies
[ v ()-FO1dt =0, forall 0<j<a-1 (6

The velocity vector is obtained from the averaged
acceleration vector by integration.

v(r) = | &t +v, = SOV 0
: &

The relation between acceleration and velocity at each
inner time step can be obtained by

Voo = 7 T v, = ST Ot v, ®)

It can be rewritten in simplified matrix form as
V., =VA, +¥A, +JV, ©)

n+l n+l
T T T T
where Vn*] - {va/u ’ vn+2/u s Vn+l}
—fal T T AT
Arwl - {an+l/(1 ’ an+2/u Ea an+1}
By the same procedure, the averaged velocity

V(t) e P \[¢,.2,,,] is givenas

V0= 3T 0, 40

The displacement vector is recovered from the averaged
velocity vector by integration. It can be rewritten in
simplified matrix form

(10

U, =¥V, +¥V, +JU,

n+l o n

T T T 7T
Un+l = {uml/a 4 un+2/u L) un+l}
The obtained relations for displacement-velocity and

velocity-acceleration are used for time integration with the
dynamic equilibrium equations like the trapezoidal rule.

(11

where

2. Time Integration Algorithm

Addition to the relations for displacement-velocity and
velocity-acceleration, the dynamic equilibrium equations

at the inner time steps f,,,, are considered to obtain a

time integration algorithm.

ma,, +cv, . +ke o= f,m./u, 1<i<a (12)
In simplified matrix notation, it can be denoted as
MA,, +CV,,+KU,, =F,, (13)

where M,C and K are block diagonal matrices for mass,
damping, and stiffness, respectively and F denotes the
forcing vector.

For obtaining the unknowns A,V U

a+ls Tl T optl 2

it is sufficient
to solve the equations (9), (11), and (13), simultaneously.
Thus the numerical time integration algorithm is reduced
to obtain the solutions of the simultaneous algebraic
equations. It is written by
For the given initial conditions A,V U, ,
find AV, U of the next time step such that
Vn+l = ?Arnl + ¢0A" + JVn
U, =¥V, +¥F,V, +JU,
MAMI + CVMI + KUMI = le
Like the Newmark- B method, the system of algebraic
equations for time stepping numerical integration can be
solved by several procedures such as acceleration-form or

displacement-form. The algorithm of acceleration-form is
summarized as shown below.

(14

i) Calculate a, such that ma, +cv, +ku, =f,
Set A, ={07,07,...0",a]}'
V,={07,07,0",v,}"
U, ={07,0",-0",u’}’
ii) Calculate M? =M + C¥ +K¥* and M?"
iii) Do n=0

Set U =FFA +(FI+F,)V,+JU,

V=T A, +IV,

n+l

Calculate R® =F,,, —CV® —KU™

a+l n+l n+i
= MYIR®
An+l =M Rn+l
- U™ 42
UnH =U +¥ An+l

n+l

V., =V® +WA

n+l
Set n=n+l1
Continue

Moreover, from the stability analysis of a single
degree of freedom system that excludes the damping and
the applied loading condition, it is known that the present
algorithm is unconditionally stable for all the approxima-
tion orders. The numerical test about stability is shown in
the next section.
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lil. Numerical Tests for Accuracy Analysis

1. Period Elongation and Accuracy

The percentage error of period elongatione,,,,, can be
defined by the difference of the numerial period 7,,,, and
the exact period T as

(15

To obtain the period elongation error of the present
method, the spring-mass system is chosen and its free-
oscillating response is simulated by each order of
approximation for various time steps Ar. In this
fundamental system, the period elongation is clearly
observed. The equation of motion of the model problem is
described by

€ period

= I;mm -T % 100
T

ma+ku=0 (16)
with the initial conditions uw(0)=u, and v(0)=v,
where m and k denotes mass and stiffness, respectively
and a, v, and u denote acceleration, velocity, and
displacement, respectively. From the predicted results, the
numerical period is acquired for each order of
approximation. The percentage error of period elongation
versus Ar/T is shown in Fig.l. From Fig.1, it can be

known that the present method of the higher order
approximation is much more accurate than the trapezoidal
rule(the present lst order approximation). In Fig.2, the
percentage period elongation error versus At/T is plotted
in log-scale to observe the order of accuracy of the
present method for each order. The slope of each line in
Fig.2 indicates the order of accuracy of the proposed
method. The result shows that the present method of a-th
order approximation is 2a-order accurate.

2. Numerical Examples

2.1 Free Oscillating Case

The time domain response of the free-oscillating
system is obtained for each approximation order. The
system with initial displacement(m=k=1, u(0)=1 and
v(0) = 0 ) is solved in Fig.3 and the time domain response
of the system with the initial velocity(m=k=1I, u(0)=0
and v(0) = 1) is simulated in Fig.4. In the simulations, the
time steps n/3, 2n/3, n . and 4z/3 are used for the Ist,

2nd, 3rd, and 4th order approximations, respectively. In
spite of the fact that the larger time steps are chosen for
the higher order approximations, the more accurate
solutions are obtained in the higher order approximations.
In particular, the third and the fourth order
approximations show the dramatical improvements in the
solution accuracy although the time steps of larger than
the half of the period are used. Fig.5 shows that the stable
solutions are produced for all the orders of approximation
with very large time steps compared to system period.
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Fig. 1 Percentage period error versus time step for
various oders of approximation

1E+5

E &  Trapezoidal Rule (1stOrder) 3
1E+4 E — Present2nd Order ™
1E+3 A Present 3rd Order 1:
1E+2 i— --4)-— Present 4th Order -!-:
e _.{/ﬂ -

g F -4] E
.E. 1E-1 5- - . —g
o 1E2 4 i -
b 3 3
£ EIE R
s E E
1E4 - -
= A T
B - - x . co- .
€7 o o=
168 |y N .
1E-9 ] i1 |\.||lI i 1) llllll i =
€2 1E1 1E+0

Time step (At) / Period

Fig. 2 Log-scale plot of percentage period error versus
time step for each order
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Fig. 3(a) Predicted result of the present method compared
to the exact solution for the free-oscillating case using the
third order of approximation with zero initial velocity
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Displacement

By Present 4th Drder
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Fig. 3(b) Predicted displacement, velocity, and acce-
leration by the present method of the fourth order
approximation.
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Fig. 5 The simulated solutions with very large time steps
compared to the exact period

2.2 Damped Oscillating Case
A damped oscillating system is simulated to observe
the damping characteristics of the present method. The
equation of motion is as follows
ma+cv+ku=0 (17)
with the initial conditions w(0)=u, and w0)=v,

where ¢ denotes damping coefficients.

The simulations for case m=k=1, ¢=02, u(0)=0
and w(0)=1 are performed by the first and third order
approximations. In the numerical calculations, the time
steps n/3 and n are used for the Ist and 3rd order

approximations, respectively. The results are shown in
Fig.6. Like as the free-oscillating case, the better result is
obtained in the higher order approximation. From the
example, it can be known that present method predicts the
damped motion of the dynamic system very accurately.
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Fig. 6 Predicted result for the damped oscillating case
using various orders of approximation
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2.3 Forced Vibrating Case
Forced vibrational motion with no damping is
predicted in the third example. The equation of motion
assumes the form as follows.
ma+ku=f (18)
with the initial conditions u(0)=u, and W0)=v,
Thecaseof m=k=1, f=-10sin(0.3r), w(0)=1 and
v(0) =1 is simulated and the predicted results are
compared with the exact solution. The time steps At used
in the 1st and 4th order approximations are 1 and 4,
respectively. Fig.7 shows the simulated results. In the
trapezoidal rule (the 1st order approximation), a smaller
time step is used than in higher order approximations;
nevertheless, the result of trapezoidal rule shows
considerable deviation from the exact solution. By
comparison it shows the better accuracy of the present
method of higher order approximation.
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Fig. 7 Predicted result of the present method compared to
the exact solution for the forced vibrating case

2.4 Vibration of Clamped Euler Beam

In our final example, the vibrational motion of the
clamped Euler beam is analyzed. The governing equation
is as follows.

pA (19)

o'u o° 6%u
+ 2 B2 = ot
o’ 6x"[ 6x2] S0

with the boundary conditions u(0,1)=0,

2 2
a0,z —o, 2 E2E] -0
x|, ox”| Ox ox® )

and the initial conditions  u(x,0) = u (x) and
v(x,0) = v,(x)
where pA, EI, and [ are the mass per unit length, the
bending stiffness of the beam, and the length of the beam,
respectively. The material constants and dimensions of the
model used in the simulations are shown below.

Density p=0.11b/in",

Beam cross section area 4 =1in?,
Young's modulus £ = 1x 107 psi,
Moment of inertia / =1/12 in*,
Length of the beam / = 20 in

In the simulations of Fig.8 and Fig.9, 10 conventional 2-
node hermite elements of size 2 are used for the space
discretization of the beam. With zero initial velocity, the
static deflection of the beam due to the tip loading 10 Ib is
used for the initial displacement. The whole space-time
behavior of the beam is shown in Fig.8 which is simulated
by the 2nd order approximation with time step
2n /1000 sec.

PRRTARLEE IR AT

\

Fig. 8 The whole space-time domain response of Euler
beam obtained from the second order of approximation

Fig9 uses 2r /125 sec, 4m/125 sec,
6m/125sec, and 8m/125sec for the time stepping
procedures of the 1st, 2nd, 3rd, and 4th order
approximations, respectively. The solution for the
trapezoidal rule(the present st order approximation) with
time step 2m/12500sec is also presented in Fig.9. In

time steps
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Fig.9, the time dependent responses at the tip of the beam
are presented for all the orders of approximation. As
previous examples, the accuracy of solution is greatly
improved as the approximation order is increased. Finally,
the dynamic response due to impulse tip loading 8(/,0) is
simulated with zero initial condition by the third order
approximation. In the simulation, the same number of
beam elements in Fig.8 is used with several time
steps(2n/10000 sec, 2r/500 sec, and 27/50 sec) . The
effect of impulse loading is imposed through the initial
velocity since the impulse loading produces an
instantaneous change in the velocity. The simulated result
of Fig.10 shows that the solutions with large time steps are
not deteriorated by higher modes in the stiff systems[12]
and stabilized. It is confirmed that the present method
conforms well to the stiff systems frequently occurred in
structural dynamics.
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Fig. 9 The tip displacement of Euler beam versus time for
each order of approximation with zero initial velocity
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Fig. 10 The tip displacement of Euler beam versus time
for various time steps under impulse tip loading condition
using the third order approximation

IV. Conclusions

In this work, a new numerical time integration method
is developed for the structural dynamics, which is higher

order accurate and unconditionally stable. The method is a
generalized version of the famous trapezoidal rule. To
generalize the concepts of the trapezoidal rule, the
projection operator in function space is chosen and
averages of higher order acceleration and velocity are
obtained. By the procedure, the method uses acceleration
and velocity that is averaged in a generalized sense
(projection) like the trapezoidal rule. The present method
of linear approximation is exactly the same as the
trapezoidal rule.

To observe the accuracy of this method, the period
elongation error is plotted. The results shows that the
present method of a-th order approximation is 2a-order
accurate. From the several numerical tests, it can be
confirmed that the present method gives unconditionally
stable solution, having higher order accuracy and it is
justified that the method conforms well to stiff systems
frequently occurred in structural dynamics.
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