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Error Estimation of the New Stress Integration Method
Using a Plastic-Predictor Followed by an Elastic-
Corrector and Its Application

Y. H. Yoo, D. Y. Yang and D. T. Chung

1. Introduction

For the analysis of dynamic elastic-plastic problems, finite element program using
the explicit time integration method involves the integration of, at each instant, the
equations of motion to obtain the velocity gradient for each element [1]. The task of the
constitutive algorithm then is to use this velocity gradient and the current values of the
stress, strain, temperature, and other state variables, to calculate the corresponding
incremental quantities over the time increment prescribed by the program. A very
important requirement is that this task should be performed accurately and efficiently.
For rate-independent elastoplasticity, most explicit finite element codes use the radial
return technique. This technique was invented by Wilkins [2] and further generalized by
Krieg and Key [3].

This radial return method uses an elastic-predictor followed by a plastic-corrector
(EPPC method). At a given point on the current yield surface, the entire strain increment
in a continuing plastic loading is first assumed to be elastic. This takes the stress point
beyond the subsequent yield surface, which is then corrected through a radial return
scheme to satisfy the yield condition.

Recently, a simple explicit algorithm which nearly exactly estimates the subsequent
yield surface, in one time increment, with no iteration was developed by Nemat-Nasser
and Chung [4]. In this technique, the entire incremental deformation over a given time
increment is first regarded to be plastic, and is then corrected to account for the elastic
part. In other words, the technique is based on a plastic-predictor followed by an
elastic-corrector (PPEC method). This algorithm is always stable and incredibly accurate,
independently of the time or strain increment. Until now, however, research result
obtained by a large-scale code, in which the PPEC method has been implemented is
very rare [S]. Especially, no research work has been reported for a three-dimensional

problem. Although the performance of the PPEC method has been discussed by Nemat-



Nasser and Li [6], Its major weakness originates from the lack of systematic error
estimation. Hence, in order to apply the PPEC method to the three-dimensional complex
problems with confidence, the systematic error estimation using error map and the
evaluation of simulated result in the three-dimensional problems are needed.

2. Summary of PPEC method [7]

Let T be the Cauchy stress deviator with effective stress T and orientation N,

1, 1
T= Etij‘cu, N; = T 0
The total deformation rate tensor is given by
D; =D, +D;’

)]

where  D,° and D,;° (deviatoric without a prime) are the elastic and the plastic deformation
rate tensor, respectively. The elasticity is given by

T=Cy,Dy", . 3

and the plasticity is defined by

Dy® =Ny, 7=D;"D;", )

where  Ci is the elasticity tensor, ¥ is the plastic strain rate, and the objective stress

rate T:j is defined by

o

Ty = Ty~ Wy Ty + Tikwkj,

&)
where W; is the spin tensor.
Let T be defined by a flow rule of the form

=8t 7. T) ©)

Y= [1®E, Yo =2

N
where Y is the effective plastic strain.
For simplicity, assume elastic isotropy and use equations (2)-(4) to obtain
%, = 2G(D; - D;f) = 26(D; ~N,) ®

It can be shown by simple manipulation [6] that the basic constitutive equations are

reduced to a tensor relation for T; , and a scalar relation for 1T, as follows.

t; = 2GD; - 2G{N, +{W, 1/, - r;kw,q.}, ©

1 .
——+y=d,d=N
N TR

i
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. (10
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The following is the numerical algorithm of the PPEC method.
Step 1. Solve the following set of constitutive equations :

Y 3 ’ Y ’ ’ ;C iy s
t, = 2GD; - 2GiN, +{W, 7, -, W, }, Hoti= d, d=N,Dj.

Step 2. Integrate the tensor equation twice from time t to t+ & (first 9= Av2, then 0

=At) to solve for ‘l:i'jp(t + At/2) and ;" (t + At), respectively [8]:

Ti,jp(t +0)+ go{T;kp(t + ﬁ)ij - Wikt:tjp(t + lt))} (1)

= Co[Ti'j(t)"‘ &(’){Ti,k (W, = W, 1 (t)}]"‘ neDj-

Step 3. Find the orientation of the stress tensors at time t+At/2 and t+At, respectively :

TP (t+ At/2 T P(t+ At
Nij(t+At/2)E—-%——/—)—, Nij(t+At)E-—:ip(—)—. (12)
|5 (e + Ay2)| TP (t+ At)|
Step 4. Find d* with one Gauss integration points as follows :
d’ = N;(t+ At/2)D},. (13)
Step 5. Integrate the scalar equation to find the effective stress and plastic strain increment
as follows :
Tt +At) = T (t+ At)+ n(t+ At)‘t(t)’
1+ n(t+At) (14)
* Ok * Ta(t+At)_'t(t)
Ay=(d =YV e)At=d At - ,
v=(d =) V2G(1+mn(t + At)) (15)
where
T (t+At) = g(d", y(t)+d’At, T*(t+Av)), (16)
1 ogl dg dg % ..
t+At)= | =—t =+ =T |
n(t+a) V2GA [ay At 3y ITpC, (17
Ve = T (t + At)—(t)
" 2G{1+ n(t+ ADjac (18)

E Ay >0, go to step 6, otherwise go to step 7.
Step 6. Normalize the stress tensor :

T (t+ At) = V21(t + AN, (t + At). (19)
Go to step 2 for the next time step calculation.

Step 7. Integrate the tensor equation with D, = 0 and solve for  Tj(t+At) :
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T, (t+ At) + —Az—t{‘ci'k(t + AW, - Wt (t+ At)} =
A (20)
2’ t ’ s ’
T (1) - 7{% ()W, = W, 7, (1)} + 2GAtD;,

Go to step 2 for the next time step calculation.

3. Application to the Johnson-Cook model
In the Johnson-Cook model [9], the von Mises flow stress, G , is expressed as

G=[A+Be"] - [HCln(E_éoH . [1—(%1'_—2'{” (2D

(22)

ER 2 - te
€= ,/gnvi,-nvi,«, = [ &(e)de (23)

where € and g are the equivalent plastic strain and the equivalent plastic strain rate,

Eo is a constant, and T, T, and T, are current, melting and reference temperatures,
respectively. A, B, C, n and m are material constants. The expression in the first set of
brackets represents the effect of strain hardening. The expressions in the second and
third sets of brackets represent the effects of strain rate hardening and temperature
softening, respectively.

The temperature increase, AT , by adiabatic heating is expressed as

AT = J.t X GEdt (24)

¢ pC,
where C, is the constant-volume heat capacity of the material, and X defines the
fraction of the plastic work which is used to increase the material temperature [10]. The
summation of the temperature of the current time step and yields the temperature of
the next time step which makes an influence upon the flow stress of the next time step.

In the Johnson-Cook model, T in equation (6) and 1 in equation (17) are derived as
follows :

(i T)=[A"+BY] [”Cl“('vy:ﬂ | [1"(::2 ” ”




7 (t + At) C . Bo{y(t)+d'At}"”

n(t+At) = : ; T
\V2GA {1+c h{q_ )} ga ArBlr+d At}
Yo (26)
xtm{T*(t+ At) - T,}m—'
pC{(T, - T)" - (T*(t+ 40 - T, )"}
. mBy T (t+At)d AT (t+ At - T}
A" = pq TOXT (e AL {T*(t+A)-T,} -

pC,{(T, - T)" - (T(t+40)-T,)"}

where material constants A and B of equation (21) are related to A” and B’ of equation
(25) by the following equations.

A B 2\
A,_—____’ ’=.___ p—

4. Error estimation
First, in order to check proper implementation of the PPEC algorithm and elastic-plastic
response under large strain and rotation, the following velocity gradients are considered

20s™ 0 0
L,=| 2" -10s" 0 |, for 0<t<500us, (29)
0 0 -10s"

20s™  3000s" O
L, =|-3000s" 20s” 0| for 500 <t < 1000us. (30)
0 0 0

In the computation, AISI 4340 steel with the Johnson-Cook yield surface model is

used. The shear modulus G = 80.8 GPa and the Poisson's ratio v = 0.3 are used, with the
initial temperature T, = 950°C, and other material properties for AISI 4340 steel are the
same as the published experimental data [9].

The PPEC method with 10 time steps is used to obtain the solution, and then the
EPPC method with 10 and 10000 time steps is used to compare this result with the
solution obtained by the PPEC method. Figs. 1(a)-(c) show the time plots of the stress
components. The result of 10000 increments of the EPPC method is essentially an exact
solution. The result of 10 increments of the PPEC method is the same as the result of
10000 increments of the EPPC method, even though a large rotation accompanies the



deformation. However, the result of 10 increments of the EPPC method does not produce
the accurate consequence.

Next, attention is focused on an assessment of accuracy under various initial stress
states. For this purpose, iso-error maps are employed. This method has been used in the
previous research works [11-13]. Iso-error maps corresponding to specified loading
increments provide a systematic approach to test the accuracy of algorithms for
elastoplasticity.

Three points on the yield surface with 6,=0 are selected which are representative of
a wide range of possible states of stress. These points, A, B and C and shown in Fig. 2,
correspond to uniaxial, biaxial and pure shear stress states, respectively. The stresses
corresponding to the states of strain predefined are then computed by applying the
algorithm. Computed results are reported in terms of the relative root mean square of
the error between the exact solution and the computation, which is obtained according
to the expression

\/(Gij - G*ij)(G,-j - G‘ij)
\/C*ij G*ij

where, Oj; is the result obtained by applying the algorithm, whereas 6 is the exact

8(%) = x 100 31)

solution corresponding to the specified strain increment. The exact solution is obtained
for any given strain increment by repeated application of the EPPC method with 10000
subincrements.

The iso-error maps corresponding to points A, B and C are shown in Figs. 3-5. The
computational condition is the same as the previous one except for B=C = x=0.
Then, elastic-perfectly plastic material property with the initial yield stress is assumed.
The results of the EPPC method show the tendency of increasing error with increasing
strain increment size, whereas the results of the PPEC method maintain constant error
level irrelevant to strain increment size. In the EPPC method, a relatively good accuracy
(within 8.0 %) is obtained for moderate strain increment size, on the other hand, very
accurate results (within 0.005 %) is obtained in the PPEC method. For more clear
understanding, the computed results of the EPPC and the PPEC methods are shown in
Figs. 6 and 7 with different definition of axes. It is noted that the level of error obtained
from the PPEC method is more accurate by two or three orders of magnitude than the
EPPC method. From these results, it may be concluded that the employment of the
PPEC method is indispensable for better outcome in elastic-plastic analysis.

5. Application to buckling problem

The computed results corresponding to the numerical simulation of buckling problem
are presented below. The main objective of the simulation is to compare the computed
results of the EPPC and PPEC methods in three-dimensional problems.

The geometry and finite element mesh considered for the buckling problem are
shown in Fig. 8. The computation is performed by imposing uniform velocity of 0.1

mm/pis on the upper die. From obvious symmetry considerations, only one-half of the



specimen need be analyzed. A total of 111 eight-node isoparametric hexahedrons are
used in the computation. AISI 4340 steel with the Johnson-Cook yield surface model is
chosen for a specimen material. The material constants and computation conditions are
the same as the first example of section 4 except that the initial temperature T, is 10°C.
The coefficient of friction is chosen as 0.2. The buckling problem is solved using the

prescribed uniform velocity on the upper die during 250 ps. The resulting deformation
pattern for the specimen is shown in Fig. 9. For the sake of comparison between the
EPPC and the PPEC, the distributions of equivalent plastic strains and stresses obtained
from the two methods are illustrated together in Figs. 10 and 11. Note that the substantial
difference between the EPPC and the PPEC results is observed in the distributions of
stresses and equivalent plastic strain. These results demonstrate that the stress integration
using the PPEC method is necessary so as to obtain the accurate values of stresses and
strain.
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Fig.8 Dimensions and finite element meshes for the buckling problem

~205—



*atOus *at50pus *at100ps *at150ps *at200 ps * at 250us

Fig. 9 Deformation sequence of the specimen in the buckling analysis
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Fig. 10 Comparison of equivalent plastic strain distribution between the EPPC and the
PPEC methods at the final stage in the buckling analysis
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Fig. 11 Comparison of stress distributions between the EPPC and the PPEC methods at
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