2—1

S/W-Based Video Codec Systems for Intranet and Internet
Multimedia Services

Yong Han Kim, Nam Ik Cho, Kichul Kim

School of Electrical Engineering
Seoul City University
90 Jeon Nong Dong, Dong Dae Moon Ku, Seoul 130-743, KOREA
Email : yhkim@tina.scu.ac.kr, nicho@tina.scu.ac.kr, kkim@scucc.scu.ac.kr

Abstract :

This paper describes two different S/W-based video codec systems. One is a

frame-based video codec with fixed structure based on ITU H.263 standard and the other an
object-based video codec with flexible architecture based on 1SO MPEG-4 standard currently
under specification and planned to be finalized in 1998. These codecs are an experimental
implementations for examining the feasibility of real-time and/or flexible S/W-based video codecs
operating in intra and/or internetworking environments.

1 Introduction

Two different implementations of S/W video
codecs are described in this paper. The pur-
pose is to demonstrate the feasibility of S/W-
based video codecs for intranet and/or internet
multimedia applications.

First, computational complexity of H.263[1]
is analyzed for estimating the system specific-
ations suitable for real-time software video co-
decs. As aresult, it is concluded that more than
4 frames of QCIF images can be coded and de-
coded using 90MHz Pentium desktop computer
if we use 3 step search for ME/MC and there is
no bottleneck for the data transfer from image
grabber to the memory of the computer. Then
we implement the H.263 based codec using 90
MHz Pentium notebook computers. PCMCIA
image grabbers and sound cards are used as in-
put devices, and wireless LAN cards are used

for communication with mobility, which is one
of the main advantages of the notebook com-
puters.

The motivation of the second work in this
paper is to demonstrate the feasibility of the
platform-independent flexible architecture of
video codecs. This type of codec architecture is
currently under heavy study within one of the
ISO projects called MPEG-4 [2]. In this pa-
per the feasibility of the reconfigurable decoder
architecture with downloading of new decod-
ing tools is demonstrated by implementing the
Java encapsulation[3] of the MPEG-supplied
S/W decoders written in C language{4]. The
particular implementation assumes one way
communication such as the web browsing of
MPEG-4 compressed video data although the
full MPEG-4 specification will provide two way
communication capabilities for user interac-
tions.

A part of this work was supported by Electronics and Telecommunications Research Institute, Korea, through

contract No. ETRI 96-51.

2 Video Phone for Notebook
Computers

Most of application programs for desktop com-
puters ¢an be used for notebooks without modi-
fication. However, in case of video phone pro-
grams, it needs much modification because the
video overlay or capture boards for notebooks
are not so popular and have limitations on
speed and space. Also, while desktop com-
puters are usually wired on modem or Ethernet,
the notebook computers need wireless commu-
nication channel for keeping the portability.
For the implementation of software video
codec on notebook computers, efficient soft-
ware modules for I/O and network are ne-
cessary in addition to the coder and decoder
programs. Figure 1 shows the structure of
the program modules required for the imple-
mentation of the software codec. In Fig. 1,
the image grabber is the module for receiv-
ing NTSC signal and converting it into di-
gital YUV format. We used NogaTech’s PCM-
CIA Capture Vision for receiving image in-
puts, and used its 16 bit API (application
program interface) for converting RGB into
YUV format. The image coder/decoder are
programmed based on the H.263 standards.
The audio coder and decoder accommodates
many kinds of speech compression algorithms.
The data multiplexer/demultiplexer combines
or separates the bit streams from audio and
video coder/decoder. The output from the mul-
tiplexer enters into the packet driver modules
and transmitted through wireless LAN cards.
AT&T’s 2.4GHz WaveL AN cards are employed
in our system. The packet driver modules con-
trol the wireless LAN cards, and the commu-
nication protocol is based on the TCP/IP.
Since the 16 bit API is used for the con-
trol of image inputs, whereas the rest is pro-
grammed 1n 32 bit mode, the image grabber
modules is not synchronized with the rest of

the program. As a result, the coding efficiency
is lower than expected. The system can code
and decode 2 frames of sub-QCIF images per
second, much less than the estimated frame
rates. In future studies, we are going to develop
32 bit program for the image grabber or employ
MFC (Microsoft Foundation Class) libraries.

3 Platform-Independent Co-

dec Architecture

The basic architecture is described in Figure 2
The decoder can have 3 different types of decod-
ing tools: resident, user-installed, and down-
loaded tools. Every MPEG-4 compliant de-
coders should be equipped with all the resident
tools defined by MPEG-4. These are allowed
to be platform-dependent. User-installed tools
are those that can be installed by the users of
the decoders and are the extensions to the res-
ident tools. They are not necessarily platform-
independent and some restrictions may apply
to the versatility of the decoders. This means
that the decoders avoid of the user-installed
tools cannot decode the encoded bitstreams
produced under the assumption of those tools.
The downloaded tools are those that can be
downloaded through the network. These tools
should be platform-independent unless the en-
coder has all the executable binaries for differ-
ent decoder platforms. The availability of the
downloaded tools enables the encoder to define
any new tools as desired. This results in flexib-
ility and extensibility of the decoder, which dif-
ferentiates the MPEG-4 decoder from the con-
ventional schemes such as H.261, H.263, and
MPEG-2.

According to the MPEG-4 Draft Specifica-
tions, a particular decoding mode or algorithm
consists of a set of decoding tools. If the de-
coder is to operate in one of the selectable
modes, it uses only the resident tcols. This

mode 1s called “Flex-0”, which is quite sim-
ilar to the profile formation in MPEG-2. If the
encoder 15 to define a new decoding mode by
reconfiguring the resident tools, the reconfig-
uration information should be delivered to the
decoder as well as the compressed data. This
mode 15 called “Flex-1." Finally the “Flex-2"
permits downloading of new tools. The down-
loadable tools should be platform-independent
modules. One approach to achieve such capab-
ility is to provide the tools in Java bytecodes
that can be interpreted by any Java-enabled
platforms.

Figure 3 illustrates the block diagram of
the implementation that allows all the three
“Flex” modes. The main program of the de-
coder is implemented using Java so that the
downloaded tools can be configured. It is a
“Java application” rather than a “Java applet.”
A web browser such as Netscape is used to
browse the HTML files at the server, which
has links to the MPEG-4 compressed bitstream
files. If the client user click one of the links,
the browser invokes a supplementary program
such as a “plug-in” in case of Netscape and the
plug-in initiates the MPEG-4 Java decoder pro-
cess. The plug-in makes possible the in-screen
display of the reconstructed video and provides
the data transfer channel between the browser
and the Java decoding process. This data trans-
fer can be implemented through temporary files
as well as “pipes.” Note that for security reas-
ons direct access from “Java applets” is not al-
lowed to the client hard disks. The MPEG-
4 encoded bitstream includes the configuration
information as well as the downloaded tools, if
any. All the downloaded tools are Java byte-
codes so that any Java-enabled platform can use
them after the on-line reconfiguration of the de-
coder functionality. The main program of the
MPEG-4 decoder interprets the configuration
information and call the appropriate decoding
tools. If new tools are downloaded, the decoder

main program places them in a predefined dir-
ectory for further use in the decoding process.
Right before the decompression, the decoder
main process invokes another process that will
display the reconstructed video frame by frame
whenever a complete frame is decompressed.

The S/W-based MPEG-4 decoder is im-
plemented on a IBM-compatible PC which is
a network client. The server has MPEG-4
compressed bitstreams obtained by off-line en-
coding of test video material according to the
MPEG-4 Verification Model[5]. For the test of
“Flex-0" and “Flex-1" capability, two different
gquantization matrices are used at the choice of
the encoder. And for the test of “Flex-27, one
of the simplest tools is programmed in Java and
downloaded within the bitstream. As a result,
it has been demonstrated that the idea of flex-
ible platform-independent decoder architecture
is feasible.

4 Conclusions

The software codecs based on H.263 standards
has been implemented using PCMCIA image
grabbers, wireless LAN cards, and 90 MHz
Pentium notebook computers for mobile video
phones and other applications. They can code
and decode more than 2 frames of sub-QCIF im-
ages per second. Since the image grabber soft-
ware module is separated from others, the frame
rate of the codec is much lower than the estim-
ated. For further performance improvements,
32 bit interface program or program modules
based on MFC (Microsoft Foundation Class)
libraries is being developed.

The other contribution of this paper is in
demonstrating the feasibility of the platform-
independent decoder architecture that can ex-
ecute downloaded decoding tools in a combin-
ation of the resident tools. Based on this basic
architecture, further research is required for a
tull implementation of the MPEG-4 decoder.

References [3] Ken Arnold and James Gosling, The Java
Programming Language, Addison-Wesley
(1] International Telecommunication Union, Publishing Co., 1996.
Line Transmission of Non-telephone Sig-
nals, Draft ITU-T Recommendation H.263,
April 1995.

[4] ISO/IEC JTC1/SC29/WG11
MPEG96/M1089 “MoMuSys C imple-
mentation of the VM 2.2,” July. 1996.

(2] ISO/IEC JTC1/SC29/WG11 N1401, [5] ISO/IEC JTC1/SC29/WG11 N1277,

“MPEG-4 MSDL Specification Version ‘MPEG-4 Video Verification Model Ver-
1.3, Sep., 1996. sion 3.0,” July 1996.
video output camerainput audio Input
screen image audio
driver grabber digitizer
L 4
image audio
coder coder
I
data
multiplexer
packet
driver
packet
driver
data
demuttiplexer
image audio
decade decode
4 y
screen audio
driver driver
video output audio output

Figure 1: Structure of the software for video phone.

Original [

Video : | transmission | e
Objects .~ MPEG-4 chanel | MPEG-4 | rec\(;?;eo cte
S)
Encoder % Decoder object
|

downlodable

downlodable
tools

tools

user-installed
tools

E resident /
N

Figure 2: Basic architecture of the platform independent video decoder.

Web

Web
Server Client
T "’—‘"\
f/Web \ intra/inter net ;KV;\
| DB ; » | Browser |
4) f config
t link info
New
GE‘(; 4 decoding
Cgmpressed tools
bitstreams (optional) P
- Decoder
compressed Main
\ data (JAVA)

Figure 3: Block diagram of the implementation of the S/W-based MPEG-4 decoder.

