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ABSTRACT

A hospital's intensive care unit
(ICU) is a limited and critical resource
whose efficient utilization of capacity
impacts on both the welfare of patients and
the hospital's cost effectiveness. Decisions
made in the ICU affect the operations of
other departments. Yet, decision making
in an ICU tends to be mainly subjective and
lacking in clear criteria upon which to base
any given decision. The study reviews the
capacity utilization of one particular ICU,
that of a public hospital in Hong Kong, and
develops a computer simulation model to
improve both the unit's capacity utilization
and the quality of care provided to its
patients.

1. Introduction

Its intensive care unit (ICU) is the
one component of a hospital that cannot
afford the luxury of a bad decision, because
the price exacted for that bad decision may
be the life of a patient. All decisions
affecting ICU patients, however, are not
made within the unit itself and after the
patient has gained admission to the unit.
Rather, there are decisions to be made both
as to which patients will be admitted to the
unit and when a particular patient will be
admitted. Whereas in an ideal world with
infinite resources, ICU beds and staff
would be available to any patient upon
demand, in our less-than-ideal world
hospital administrators with limited
resources at hand must weigh costs against
benefits, and then make decisions as to the
allocation of their limited resources. The
initial result is ICU units that operate under

various capacity constraints, the tightest of
which is commonly imposed by the fixed
number of beds allotted to the unit. The
subsequent result is that some patients who
would otherwise qualify for immediate
intensive care may, upon those occasions
when all beds are occupied, have to join a
queue and suffer any consequences of
untimely delays in being admitted to the
ICU, while others never even get to join
the queue.

This paper presents the results of a
theoretical analysis and computer
simulation that models the admissions and
discharges of a specific ICU. The two-fold
ultimate purpose of the model is to help the
hospital's administration explore alternative
policies for improving the unit's
performance on any number of dimensions,
and to enable us to draw some broader
inferences as to how the operating
performance of ICUs in general might be
improved.

2. The ICU Admission and Discharge
Processes

Virtually all patients come to the
ICU that is the focus of this study from
four different sources: (1) Ward; (2)
Accidents and Emergency; (3) Operation
Theatre - Emergency; and (4) Operation
Theatre - Elective.

A patient referred to the ICU by his
or her physician goes through a review
process that might take anywhere from a
few hours to a few days.



The ICU's admission decision takes
two factors into consideration: the patient's
“attributes" and the "state" of the ICU.

The patient's attributes include such factors
as the severity of illness, age, expected
length of stay, and the probable outcome.
The state of the ICU refers to bed
availability and the possibility of an
expedited discharge of any current patients
whose recovery has perhaps been more
rapid than had been foreseen.

3. The Underlying Data

The present analysis is done with
data that were collected from the hospital
over the continuous six-month period from
March to August, 1995.

A Poisson distribution has the
property that the mean of the distribution is
equal to the variance. We therefore
computed the mean arrival rate and
variance for admissions from each of the
four principal sources of arrivals to the
ICU. These are denoted A and 0'32,
respectively, and are given in Table 2A. In
three of the four cases, with OT-electives
being an exception in which the computed
variance is about 40% larger than the
computed mean, the two statistics are quite
similar. We also carried out a Chi-square
test of the hypothesis (Table 2B) that
arrivals from each of these sources are
Poisson distributed, and with that single
exception could not reject the hypothesis at
the oo = 0.05 level of statistical significance.

Table 2A: Arrival rate for each patient group.

Where Mean (A) _ Variance (6.2
1. Ward 2.120/day 2.638
2. A&E 1.054 1.149
3. OT-emergency 0.489 0.489
4. OT-electives 1.130 1.537

Table 2B: Results of Chi-square goodness
of fit test for arrivals.

Ward 5 11.07 8.91 accepted
A&E 4 9.49 3.96 accepted
OT-emer 2 5.99 2.19 accepted
OT-elec 4 9.49 2721 rejected

Note: All are one-tailed tests with =0.05.
For detailed procedure, see, e.g., Snedecor and
Cochran [8], p.75.

The next salient issue, then, is
whether the service times in the ICU -- that
is, the length of time that a patient spends
in the ICU before being discharged -- are
exponentially distributed by patient source.
Once again, we test for this by first looking
at the actual means, denoted p, and
variances, denoted o2, of the length of stay
in the ICU for each of the four patient
groups, and then conducting a Chi-square
test.

Table SA: ICU Service times (length of stay).

Where Mean (p) Variance(o,’)
1. Ward 63.73 hrs 4976.21 hrs
2. A&E 48.48 2952.58

3. OT-emergency 77.47 5353.98

4. OT-electives 48.72 4326.47

Table 5B: Results of Chi-square goodness of fit
test for service times.

Source Critical Test

Dept. df value,y? stat,y” H,
Ward 11 19.68 18.73 accepted
A&E 7 14.07 13.70 accepted
OT-emer 10 18.31 11.24 accepted
OT-elec 8 15.51 58.44 rejected

Critical
value,y?

Test
stat,y?

Source

Dept. df H,

Note: All are one-tailed tests with o=0.05.
For detailed procedure, see, e.g., Snedecor and
Cochran [8], p.75.

4. Queueing Analysis

The typical queuing model] with
parallel multiple servers assumes that each
server has the same mean service rate. We
also make that assumption here, treating
each of the ICU's beds as one of the
parallel servers.

The subject ICU has a total of 14
beds. We exclude from our analysis any
data outliers such as long-stayers and
transfers from other hospitals. These
outliers account for 5.89% of the total



number of patients. To allow for this
exclusion in our model, we carry out our
analysis as if there were only 13 beds in the
ICU, which reduces the available capacity
by 7.14%. Thus our approach is a
conservative one.

We assume that each one of those
13 beds maintains the same one of the
three overall service rates and that the
service system is one with s = 13 identical
and multiple servers (beds) operating in
parallel, with patients entering the ICU
through a common queue. As a precursor
to our simulation experiment, we therefore
explore the steady-state operating
characteristics of this classic M/M/s
multiserver system.

The actual computation was carried
out by using the Quantitative Systems for
Business (QSB) software [4], and the
results are presented in Table 8.

Table 8: Operating characteristics of the ICU in a
steady state.

Service rate/bed/day

(lowest) (simple avg) (wgt avg)
Performance measures

Uem = 0.310 v =0376 v, =0.382

Bed Utilization (p) 0.9364 0.7721 0.7600
Avg no.pat in sys(L) 23.2568 11.0232 10.7255
Avg no.pat in queue(L,) 11.0826 0.9859 0.8459
Avg time in sys{W) 6.1624 days 2.9208 2.8419
Avg time in queue (Wy) 2.9366 days 0.2612 0.2241
Prob all beds empty(P,) 2.304E-06 3.935E-05 4.674E-05
Prob arvg pat waits(Pw) 0.7518 0.2910 0.2672

Note: The system consists of a queue and the ICU.

5. The Simulation Model

For our simulation experiment, we
build a model using XCELL+ [5], a
simulation software with graphical
animation. The model's basic parameters
are the inter-arrival and service times,
which are taken from Tables 6 and 7,
respectively.

effect of the start-up period during which

the system is empty and idle. Table 9

presents the results.

Table 9: Simulation results.

Performance measures Results

Bed Utilization (p) 0.7749

Avg no. pat in queue.(Lg) 1.063

Avg time in sys(W) 3.014 days (wghtd)
Ward 72.951 hrs
A&E 57.041
OT-emer 87.960
OT-elec 74.326

Avg time in queue (Wy) 0.289 days (wghtd)
Ward 7.505 hrs
A&E 6.742
OT-emer 7.008
OT-elec 6.590

No. pat treated/yr 1,352.3 pat/yr
Ward 380.0
A&E 259.7
OT-emer 169.2
OT-elec 543.4

Max no. pat in queue 31

Note: The system consists of a queue and the ICU.

6. Conclusions

In actual fact, as shown in Table 10,
except for elective surgery a very small
number of patients who would otherwise
have qualified for admission to the ICU

during our six-month sample period were

denied admission because all 14 beds were

occupied. About half of the 15 non-elective

surgery patients who were denied admission,
did not survive. Whether these patients
would have survived had they been admitted
to the ICU is not known and is at best
questionable. In the case of elective surgery,

where almost 1/4 of the referrals have been

denied admission due to a full ICU, the
operation was canceled and presumably

rescheduled.

Table 10: Percentage and number of patients
rejected due to a full ICU during the 6 months.

Where Percent  Number Survival
. 0,
The experiment was allowed to ; X’gg ?'334 123 ?
take place over a ten-year time span. This 3. OT-emergency 0.0 0 0
equates to 87,600 simulated hours, after 4. OT-electives 23.56 49 Op. canceled

discarding the first year to remove the



Taken in conjunction with the OT-
elective arrival-rate data of Table 2A and the
OT-elective service-time data of Table SA,
each of which offers the only serious
deviation among the four sources of ICU
patients from the classic Poisson arrivals and
exponential service times distributions, both
the sample data and the theoretical results
suggest that insofar as there are serious issues
relating to the managerial aspects of the ICU,
these emanate solely from elective surgery.
The further suggestion, then, is that insofar as
it is possible to deal with these issues, they
must be dealt with through better
coordination between the ICU and the
referring surgeons in scheduling elective
surgery in the first place. Thus, for example,
rather than have surgeons initiate the
conversation by requesting information as to
the possible availability of an ICU bed, if
needed, "on Friday," as is ordinarily the case,
the ICU's administrator might issue a blanket
advisory to all surgeons who rely on the ICU
on the probability that no beds will be
available "on Friday", that one bed will be
available, and so forth. The further analysis
that we intend to undertake in this study will
permit the generation of such data.

At this point our analysis suggests
that the current ICU capacity of 14 beds is
sufficient to handle patients at the current
arrival rates. Any perceived or real imbalance
in timing between when there are vacancies in
the ICU and when patients are referred to the
ICU, would seem to be correctable through
better communication between surgeons and
the unit's administration.
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