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ON ROTATING CAVITATION
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Engineering Science
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INTRODUCTION

During the development of the liquid oxygen (LOX)
turbopump for the LE-7 main engine of the HII rocket, a
supersynchronous shaft vibration caused by rotating
cavitation (R.C.) was observed (Kamijo et a1,,1993). R.C. is
quite different from rotating stall (R.S.): (1) the cavitating
region rotates faster than impeller and (2) it occurs near
design flow where the head characteristics have negative
slope. Although this R.C. was successfully suppressed by a
minor modification of the i nducer housing, the cause and the
fundamental mechanisms of rotating cavitation remained
unclear.

It was reported that R.C. was also experienced in the
developments of an alternate design of the high pressure
oxygen turbopump for the Space Shuttle Main Engine (Ryan
et al, 1994) and of the liquid hydrogen turbopump for
ARIANE V (Goirand et al.,1992), showing that R.C. is a
common problem of modern high-performance turbopumps
for rockets.

We herein review studies to date on rotating cavitation
to elucidate what research is necessary to obtain a more
complete understanding of rotating cavitation.

EXAMPLES OF ROTATING CAVITATION

Although most of the detailed studies are recent,
observations of rotating cavitation can perhaps be traced
back to a pioneering work of Acosta (1958) on cavitating
inducers, He reported that "The alternate blade cavitation
appears to propagate from blade to blade in much the same
way as propagating stall in cascades” and warned that "In
this regime blade forces can be quite high and the various
mechanical parts of the pump assembly can be easily excited
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Fig.1 The various modes of cavitéting flow in a 12 degs. helical
inducer as a function: of cavitation number and flow
coefficient, from Acosta (1958)

to resomamce.” He also reported on various kinds of
oscillating cavitation and proposed several methods to
suppress them. One of these methods was applied in the HII
inducer and found to be effective. Figure 1 is a diagram
showing the location of various modes of cavitating flow

observed by Acosta (1958).

Rosenmann (1965) reported on rotating radial forces on
an inducer and correctly attributed them to rotating
cavitation. Figure 2 shows the cavitation performance Vg,
the rotational velocity ratio Cg of the force vector which is
identical to the propagation velocity ratio kg" = V/Ur, and
the normalized radial force Cz We should note that Cs is
slightly lager than 1. He tried to explain rotating cavitation
from a standpoint similar to that of conventional rotating
stall (Emmons et al, 1955). However, no direct flow
observations nor measurements were made.
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Fig.2 Suction performance yy, rotational velocity ratio C; of the
force vector, normalized radial force Cg plotted against
cavitation number ©, from Rosenmann (1965).
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Fig.3 Sketches of cavitated region for various relative cavitation
number v /7, with radial force F;, non-cavitating radial

force Fry, the frequency of pressure oscillation £, and the
inducer rotative frequency fi, from Goirand et al. (1992)
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Radial forces on the. four-bladed inducer of VULCAIN
liquid hydrogen turbopump were reported by Goirand et
al.(1992). From flow visualizations, it was shown that
stable balanced alternate blade cavitation appears prior to
the onset of rotating cavitation as shown in Fig. 3.
However, the character of the rotating cavitation was found
to be completely the same as that for three-bladed inducers
as described in the following section. Jt was stressed that
four-bladed inducers have an advantage as far as the shaft
vibrations are concerned, since the alteraate blade cavitation
does not bring about unbalanced radial forces. )

Rotating cavitation occurs not only in inducers but also
in industrial centrifugal pumps. Yamamoto(1980) carried
out flow measurements and observations in a three-bladed
centrifugal pump with a volute suction nozzle. Figure 4
shows the suction performance curve on which the
occurrence of flow oscillations is shown. The “heavy
oscillation” is caused by cavitation surge and the "weak
oscillation” by rotating cavitation, which was identified by
visual observation and fluctuating pressure measurements, it
was found that the cavitated region rotates slightly faster
than the impeler. .

It is important to distinguish between rotating cavitation
and cavitation in rotating stall. The latter was observed by
Murai(1968) on a 18-bladed axial flow pump. Figure 5

shows the head characteristics along with the propagation
velocity ratio for three different inlet pressures. We note
here that the cavitation in rotating stall occur in the reduced
flow range with positive slope of head characteristics and
that it rotates with a speed which is 50-60% of the
impeller. These characteristics are typical of conventional
rotating stall. ’

CHARACTERISTICS OF
CAVITATION

Rotating cavitation was first explicitly identified by
Kamijo, Shimura, and W atanabe (1977) (see also 1980) and
the present section is based on their study. Figure 6 shows
the suction performance of the test inducer on which the
onset of rotating cavitation is shown. This figure, as well
as Figs. 2 and 3,shows that

(1) R.C. is observed in the flow range where the head
characteristics have a negative slope.

(2) R.C. is observed at the inlet pressure where the
cavitation does not deteriorate the pressure performance
significantly, i.e., above breakdown cavitation number.

Figure 7 shows the sequence of cavity fluctuation on
three blades under rotating cavitation. Pictures are shown
for every 1/3 turn of the impeller and arranged to shown
the size of cavity on each blade at every turn. The blade
turns in the sequence of blade 1,2,3 and the time sequence is
from left to right. It can be seen that bigger(or smaller)
cavities propagate in the direction of blade 3,2,1 and return
to the original situation after 4 rotations. This implies the
cavitating region rotates with a speed 1.25 times that of the
impeller in the direction of impeller rotation. This is clearer
in Fig 8, in which the lengths of tip and blade surface
cavities on each blades, read out from the high speed motion
pictures, are plotted against time.

These observations suggest that rotating cavitation is a
completely different phenomenon from rotating stall. As
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Fig.5 Head characteristics of an axial pump and rotative speed ratio
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Fig6 Suction performance of a test inducer

shown in Fig. 5, rotating stalls are caused by the positive
slope of the performance and the stalled region rotates
slower than the impeller. On the other hand, it is known
that a surge can occur even with negative slope under
cavitating conditions. Various terms are used to describe
this phenomenon:low cycle oscillations, system oscillations
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Table 1 Relation between flow instabilities in turbomachinery

Cause and onset flow range | Local instability | System instability
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Fig.8 Fluctuations of cavity length due to rotating cavitation

and auto-oscillations with cavitations. The present author
believes that it is most appropriate to call them "cavitation
surge.” It is also known that cavitation surge is caused by a
character of cavitation, i.e., a positive mass flow gain factor
M, which means that the cavity volume decreases as the
flow rate increases, To the author’'s knowledge, the first
systematic explanation of cavitation surge was given by
Young(1972), although Sack and Nottage(1965) had
succeeded in simulating cavitation surge by a numerical
calculation of the system response.

On the other hand, it is also well known (Greitzer,1981)
that conventional surge is a one-dimensional, global system
instability while rotating stall is a two-dimensional local
flow instability, both caused by the positive slope of head
characteristics. Now it is quite positive that rotating
cavitation is a local two-dimensional flow instability
caused by the positive mass flow gain factor M. These
relationships among flow instabilities in turbomachnery can
be summarized as shown in Table 1.

The above discussions can be verified by constructing a
flow model which can simulate the above-mentioned
characteristics of rotating cavitation.

Flow height=1 Flow height=1/b
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2-D LINEAR FLOW MODEL

As the simplest possible model of rotating cavitation, a
semi-actuator disk model as outlined in Figs. 9 and 10 was
constructed (Tsujimoto et al. 1993). The {following
assumptions have been made.

(a) The flow is inviscid upstream and downstream of the
impeller.

(b) Disturbances are much smaller than steady
components. '

(c) Disturbances change sinusoidally with respect to time
t and circumferential coordinate y.

If the flow is assumed to be uniform at upstream
infinity, the flow disturbance upstream of the impeller can
be expressed by a potential disturbance with an unknown
amplitude, A;. On the other hand, the downstream flow
becomes rotational due to the vorticity shed from the
impeller. Then the downstream flow field is expressed using
two unknown constants, Az and Cg representing the
amplitudes of irrotational and rotational disturbances.
These three unknown constants are determined from the
following three conditions coupling the upstream and
downstream flow.

(d) The pressure increase across the impeller. This was
estimated by assuming the incidence and through flow losses
depending on the incidence at the inlet and the through flow
respectively, and also the inertia effects of the fluid in the
impeller. No effect of cavitation is assumed for the pressure
increase.



(e)The continnity relation across the impelier. We assume
that the cavity volume per blade, V, is a function of
incidence angle « and the local cavitation number o =
(o1 pv)/ p U2 and thus Vo = Vo ( o, a3 ) The continuity
relation is obtained by equating the cavity volume change
with the axial velocity difference between the inlet and
outlet of the impeller, including the cavitation compliance K
= @V /A «)/b? and the mass flow gain factor M = ( V¢
/3 a 1)/h2 where b is the blade spacing.

(f) Kutta's condition. The relative flow should leave the
impeller parallel to the impeller blades.

The conditions (d)-(f) give a set of linear, homogeneous
equations with respect to the unknown constants Az, Az and
C3 By equating the determinant of the coefficient matrix
with zero, we obtain a third order characteristic equation in
terms of a complex propagation velocity ratio k* = kg* +
Jjki', where kg®= V /Ut is the ratio of propagation velocity
Vp to the impeller speed U, and ki" is the amplifying rate
of the disturbance. This is represented by

(& - kg Xk - kg Xk - kg) =0 @

Special cases-rotating stall
For the case of M=K=0, the characteristic equation (1)
can be reduced to a linear equation which yields

e ;

}"l t+2(1+4)
where,

2 ,=2Lq+ 2L, tanp; (taap;— tan B, )
@,-2t,(tanB;-tan B, )

Q,=2x(1/s) (k—tan_ﬁ—,-)-ﬂl' (k-tan ﬂ_,)
ro=(1+8)1/(2bcos B), B =(B1+83)/2

and {q and ¢ g are through flow and incidence loss
coefficients respectively (see Fig. 9 for nomenclature). It is
clearly shown that the propagating velocity ratio kp® is
smaller than 1. It can alsc be shown that the onset condition
k"> O can be reduced to the condition where the inlet total
to outlet static pressure coefficient has positive slope. Thus,
the present model can also simulate rotating stall.

o {I_Zts(l-tanﬁ?/m )

1+5(1+)) @

Special cases-rotating cavitation
If we take the limiting cases of 1 % or @5"—90 degs.,
the characteristic equation (1) can be reduced to a second
order equation. At these limits, axial velocity fluctuation
dose not occur at the impeller outlet, due to the infinitely
large inertial resistance of the fluid in the impeller or to the
negative slope ( resistance ) of the pressure performance, and
hence rotating stall is suppressed. We represent the
characteristic equation as
& ki) - k) =0 3
It can be shown that the rotating cavitation onset condition
for this case is
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Table 2 Results of sample calculations

- Values of parameters
B1%=T1.48", B:*=76.11"
Q, =22.29, Q, =2.09
¢q =1.985, ¢, =0.612
b =1.24, ¢ _=0.04
¢* =0.794-cot 8 ,=0.06

=0.15, M =1.0
ki®=( 1.277,-0.327)
=( 1.239,-0.440)
k 2°=(-0.526,-2.812)
=(-0.531,-2.815)
k3*=( 0.957,-0.046)
(0.973,-0.044)

M>2K(1+ a)cot £ (4)

This clearly shows that rotating cavitation is caused by
positive mass flow gain factor M. Furthermore, it can be
shown that kg;” > 1 and kgz”¢ 0, implying that one of the
two modes of rotating cavitation rotates -faster than
impeller and that the other rotates in the opposite direction.

General cases

The results of sample calculations for a typical inducer
are shown in Table 2. Solutions of Eq.(1) are shown in the
upper lines and those of Eqs.(2) and (3) are shown in the
lower lines. It should be noted that:

(a) All of the imaginary parts are negative, showing that
both rotating cavitation and rotating stall can occur
simultaneously, i.., they are mutually independent
phenomena.
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(b) Three solutions of Eq.(1) have similar values to those
of Eqs.(2) and (3). This shows that rotating stall is not
significantly affected by cavitation and that the assumptions
made for the derivation of Eq.(3) are realistic for typical
inducers. The former is verified by the experiments by
Murai (1968) as shown in Fig. 5.

In real inducers, however, flow reversal at the inlet tip
promotes radial shift of the stream surface at reduced flow
rates. As a result, negative slope is obtained throughout the
flow range and hence rotating stall seldom occurs.

From the result of further caiculations, it was shown that
rotating cavitation solutions k;” and kp* are mainly
dependent on M and K and nearly independent of the flow
rate, while the opposite dependence was found for rotating
stall solution k3"

Figures 11 and 12 show contour maps of k;" and k2" in
M-K planes for the case of LE-7 LOX turbopump inducer.
The solid lines are obtained from Eq.(1), and the broken
lines from simplified equation (3), The ranges of M and X
estimated from Brennen et al. (1982) are shown in the
figures. They are in the amplifying region with negative k;°,
and the propagation velocity ratio kg = 1.1-1.2 is in good
agreement with the frequency of the shaft vibration data

shown in Fig. 13. However, the backward mode
corresponding to k" is rarely observed in experiments. The
example of backward mode is shown in the following
section,

Now it is confirmed that rotating cavitation is a local
two-dimensional flow instability caused by the positive
mass flow gain factor M and that the relationships among
flow instabilities in turbomachnery can be summarized as
shown in Table 1. The mechanisms of the flow instabilities
are shown in Fig.14.

By using a similar model, Joussellin and Bernardi (1994)
made an attempt to simulate the rotating cavitation in
ARIANE V inducer. ‘

BACKWARD ROTATINDG CAVITATION

The experimental observations show that the cavitated
region usually propagates in the direction of impeiler
rotation. The backward mode corresponding to k 2 * was
recently found at NAL (Hashimoto et al., 1996). )
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Fig.13 Fourier analysis of LE-7 LOX turbopump shaft vibrations
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Fig.14 Mechanisms of flow instabilities in turbomachinery.
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Fig.15 Inlet pressure spectrum of a LE-7 model inducer,
with forward and backward rotating cavitation.
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Fig.16 Fluctuation of cavity length due to backward
rotating cavitation.
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Fig.17 -Main pump impeller displacement in LE-7 engine test
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Figure 15 shows the spectrum of inlet pressure
fluctuation with a LE-7 inducer model at design flow rate.
The cavitation number o is increased from front to back.
The shaft rotational frequency is denoted by fy. We observe
two supersynch.roﬁous components denoted by F and B.
From tbe phase difference of pressure signals at two
different circunferential locations, it was found that the
components F and B are caused by forward and backward
propagating modes of pressure fluctuation. With the
component F (frequency fr ), 2 component with the frequency
3(fr-fy) is found. This corresponds to the frequency of the
blades to cut the cavitating region which rotates in the same
direction as the imeller rotation. Under the occurence of fp
component, a component with 3(fg+fy) , the frequency of the
blades to cut the backward rotating cavitation , was found.
Thus, the spectrum also shows that the component F is
caused by the forward rotating cavitation and the component
B by the backward mode. Figure 16 shows the fluctuations
of cavity length under the condition with the component B.
This also supports the backward propagation. The values
of M and K estimated from kjp"=fp/fy=1.18 and kpp*=
fr/fy= -1.36 is shown in Figs.1l and 12 by % for 6 =

0.072. These values are not unreasonable judging from the
experimental data by Brennen et al. (1982).

This is the only ope example of backward rotating
cavitation and we should make further experimental efforts
to determine the existence of the backward mode.

SUPPRESSION OF ROTATING CAVITATION

In the development of the LE-7 LOX turbopump, it was
possible to suppress rotating cavitation by changing the
geometry of the inducer housing (Kamijo et al.,1993), as
shown in Fig. 17. The geometry is shown in Fig. 18, and
the dimeasions are given in Table 3. The CASE 1 is similar
to the original housing and the CASE 2 is similar to the
modified housing. The values of M and K with these
casings were measured by Shimura (1993) and are plotted in
Fig, 11. These measurements show that the modification
shifts the location of M and K into the attenuating region.
However, ‘it is not wunderstood how the geometrical
modification changed the value of M and K
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Fig.18 Geometries of inducer housing

Table 3 Dimensions of inducer housing

Upstream | Front-hal{ | Rear-half
diamet Siamet, Famet
Dy mm D; mm D3 mm
CASEL 150.3 151.0 151.6
CASE2 154.0 151.5 1515




EXTENSION OF THE ANALYTICAL MODEL
3-D semi-actuator disk model

As shown in Figs. 3 and 7, the flow in the inducer is by
no means two-dimensional with large tip cavities. In order
to see the effects of the existence of large tip cavities, a 3-D
linear flow analysis was made by Watanabe et al. (1995).
Their analysis was made for a linear cascade spanning two
rigid parallel flat plates simulating hub and casing of an
inducer as shown in Fig.19. Here, the flow in the i(mpeller
is assumed to be perfectly guided by the vanes and the
cavity response is modeled by K and M as in the 2-D flow
analysis. The effect of tip cavity is represented by assuming
the distribution of K and M as shown in Fig.20. If we
represent the flow by using only two radial modes, we
obtain a 6th order polynomial characteristic equation. Six
roots of this equation correspond to Oth and 1st radial
modes of forward and backward rotating cavitation and
rotating stall as shown in Table 4.

The contour plots of Oth order rotating cavitation
solution are shown in Fig. 21, whereK and M are
averaged values of K and M over the span. If we compare

the results with those of 2-D flow analysius shown in Figs.
11 and 12, we find that these modes are not largely affected
by the uneven distribution of the cavity over the span. This
is perhaps the the reason why rotating cavitation with large
tip cavities can be simulated by the 2-D model. Similar plot
for higher order radial mode show that the Lst order radial
modes’ have larger travelling velocity but the neutral
stability curve with k;=0 is nearly the same for all of the
modes. '
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Table 4 List of characteristic roots
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2-D finite pitch cascade analysis

So far the cavity is modelled by K and M and no detailed
flow around the cavity and the blades is taken into account.
This method is useful in elucidating the mechanisms of
rotating cavitation but requires to specify the values of M
and K ’

A detailed flow analysis of cavitating linear cascade as
shown in Fig.22 is carried out (Watanabe, 1997). In this
analysis the flow is represented by a source distribution gy
on the cavity and vortex distributions yin, Yzn 20d ¥ 00 the
blade and wake surfaces as shown in Fig.23. It is assumed
that both steady and unsteady flow disturbances are small.
The fluctuation of cavity length is taken into account by
specifying the source aad vortex distributions using 2
coordinate stretching with the change of cavity length.

If we apply the pressure boundary condition on the cavity
surface and the flow tangency condition on the wetted
surface (see Fig.23), we obtain a system of simultaneous
integral equations. By discretizing the source and vortex
distributions and separating out the unsteady components,
the integral equations. are converted to homogenious linear
equations. The propagating velocity ratic kg *and the decay
rate k" are determined so that the determinant of the
coefficient matrix of the linear equations vanishes.

Figure 24 shows an example of the solutions of kz" and
k;* obtained for a cascade with the solidity C/h=1.88 and
the stagger $=79.73 deg, at 0/2c =0.25. Five solutions
are obtained in the range of kg* and k" examined.  All
modes are amplifying with negative values of k°. The Mode
I in the figure corresponds to the forward propagating mode
k;- and Mode II to the backward mode k3 . The shape of

the cavities for each mode is shown in Fig.25. We find that

Mode II and III have higher order fluctuation in the cavity
shape.

It was shown that k" and k° are dependent only on the
value oj o/2a , rather than the individual values of o and
a . All modes become destabilizing for smaller values of
o/2a.
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Figure 26 compares the propagation velocities for the
forward mode (Mode I, Fig. 26(a)) and the backward mode
(Mode ' II, Fig. 26(b)). Although the agreement with
experiments is only qualitative, the tendency of smaller kz”
for smaller @ for forward mode is simulated by the model.
The largest difference is that the critical value for o/2a is
about 1 by experiment while that by the model is about 3.5.

CONCLUSION

It was shown that rotating cavitation is a two-dimension
al flow instability caused by positive mass flow gain factor
M and that the turbomachmery instabilities can be
summarized as shown in Table 1. However, many questions
remain unanswered and further studies as follows are

needed to obtain a more complete understanding of rotating
cavitation.

(1) Although the existence of backward propagating
rotating cavitation has been experimentally shown, its
occurrence is at least far more limited than expected.
Further research work is needed to explain the much less
possibility of backward propagating mode.

(2) Tip leakage cavitation is predominant in rotating
cavitation, as shown in Fig. 6. Studies are needed to
determine the dynamic characteristics of this type of
cavitation.

(3) Rotating cavitation was suppressed by a minor
modification of inducer housing. It was shown that this
modification shifted M and K into the attenuating region.
Physical explanations should be given for this change of M
and K.

(4) The possibilities of higher order modes were predicted

in the. 3-D f}ow analysis and the finite pitch cascade
analysxls. Detailed experimental observations are required to
determine the existence of these modes.
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