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Abstract - In this paper, we characterize
the whole class of vector fields that can
be linearized by a given nominal state
transformation and a feedback linearizing
controller. The necessary and sufficient
condition for a given uncertain vector field
to be so-called "completely linearizable by
the nominal coordinate transformation” is
given in terms of Lie Bracket of uncertain
vector flelds and some suitable vector
fields of the nominal system.

1. Introduction

We consider the feedback linearizing co
single input nonlinear systems that
uncertainty. The principal limitation of
linearization is that the system dynamics s
known exactly for the nonlinearities
successfully cancelled.

The main objective of this paper is to st
necessary and sufficient conditions for
nonlinear systems which can be transform
the linear controllable system with u
parameters. If a nonlinear system with
uncertainty is transformed into a linear sy
unknown parameters, then we apply robust
techniques such as Kharitonov-based desi
for linear systems to stabilize the uncertain
system. Thus, using an only regular state-
controller, the system can be stabilized in
uncertainty.

2. Main Results

Consider a dynamical system:
2t x=flap)+ gxu, H0) = x, m

where xeR”™, u=R , p=BICR™,f,,zare assu
to be smooth vector fields on the smooth

QCR".

Let the nominal nonlinear plant modelled b
of the form:

S x = filx, pp) + g(x)u 2)
where f, .gare assumed to be known s
vector fields on the smooth manifold 2cRrR”
p is a known nominal constant vector.

If the modelling error is defined as

AR, 0, 80) = f{x. 0) — folx, b)), ®3)
the system (1) can be rewritten in terms
nominal vector field % and the modelling er

is,
x = folx, po) + 4R x, b, b)) + &(Du. @
For notational simplicity, we use f(x) 2Ax, py)
F)2 Ax,p).
Assumption 1
The nominal system (2) is input-state lin

(9 in 2. 0
By Assumption 1, there exists a n

coordinates transformation o”: Q—VcR”
form:

2=0"(x)=[T, L,T..., L3'T]", ©
where T(x) is a smooth scalar function
satisfies (dT, ad"8)=0,k=0..n~2 a

(dT,ad¥ 'g)+0 , V22 .
Since ¢ Q-VcrR" is a diffeomorphism,
define a tangent mapping 0> Te->TV as foll

ON(x)=[dNx) dL,Tx) « - dL'TH]".©®
A nominal feedback linearizing controller
obtained as follows :
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-L3T 1
“=TroT YT
with A(x)=0, VxeQ .
Hence, if we denote f(xa f(x)+elx)ex)
Zap(xe(x) , the feedback transformed s
can be obtained as follows:

T, 5= L)+ 20w ®
Using z=0"(x), the closed-loop system (
transformed into a linear controllable sy
so-called Brunovsky controller form:

2= Az+ bu, 9

v 2 a(x)+ Ax)w. (7)

with
(02 (0) flXD=Az, (0¥ (D (OND=b. (D)
where (A, b is Brunovsky normal pair.

Sinca for a diffeomorphism o™ Q-VcRr"
arbitrary smooth vector fields £.. on £

identity oY[f.AK2)=[027, 0241(2) holds ([7))
have

(02ad 72 X2) = (O, 21Nz} = [Az,b] =—Ab Q1)
and similarly for (=u

(0Fad g N2) =100 7, 02 ad*; "El(2)

= [Az.(-D* 1A% 8] = (=D*A%. (12)

Now, we define a set A of the vector fiel
as follows:

22(X1X= % 0,0t 'ex) a=R), ze0. 03
If we choose an arbitrary vector field X i
satisfies the following relation:
(O2X)(D=(~1D""2,A" b+ - +(~DaAb+a, b

=§‘1(—1)"1&,-,,H—aaz—‘, Vx4, a,€R,icxn, (14)

where 4/dz,, - -,8/3z, are the coordinates v

fields associated with the z-coordinates.
Frem (14), the representation of a vec
ad’"g(x) .ken in the coordinates of (5) ca

easily obtained as follows:

LI R IPINRTY STV - =
W D=0l as)

Definition 2

A smooth vector field on a manifold @ is ¢
completely linearizable vector field by a ¢
transformation z=0"(x) , if there exists a

matrix M in R""and constant vector 6 in
such that

(0 (x) R))2)=Mz+ 6. (16)

Lemma 3
Let Rx) be a smooth vector field on Q. Th
vector field 7is a completely linearizable

vector field by a coordinates
transformation z=0"(x) if and only if

[7.ad% e]eA, ken. an
Theorem 4

Suppose that the nonlinear system (1)
Assumption 1. Then, by~ the nominal co
transformation (5) and the nominal
linearizing control (7), the uncertain syste
be transformed into a linear system with
parameters if and only if

[41,ad%"g)e A, ken. ag
0

Proof) Sufficiency:
Substituting (7) into (4) we obtain

x=Tolx) + 4fx, b, po) + &2} v, 19
Since, by lemma 8, the modeling error 4f
completely linearizable vector field by the
coordinates transformation (5), we have

oX(Fo+ 2 2= Az + M(pz+ &P

oX(g)2)=b, 20
mp(d) - myp) me (5

where M(p)=[ . . . l.e( ={ - ]
mnl(p) " mnn(p) man(ﬂ)

mi - X R™=R(i=0,1,2...., n, j=1.2,..,n)
Therefore, by the nominal coordinates trans
(5) and the nominal feedback linearizing co
the system (1) can be transformed into
system:

z=(A+ M(p))z+ bv+ &(p) 21
Necessity:
Suppose the nominal coordinates transf
z=0"(z) transforms the nonlinear system (
(34), if follows from Lemma 3 that the re
is satisfied . (NN
In order to design control » which stabili
linear system with uncertain parameters, th

(32) should be stabilizable for all

following theorem gives a controllability con
the linear uncertain system (34).

Theorem 5

Suppose that the nonlinear system (1) sat
conditions of Theorem 4. Then the linear
with uncertain parameters (85) is controlla

p=B]
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p=Bl if and only If the distribution defined

D" =span{g ad,g - ad’y g}, 22
satisfies dimD/*=n for all p=B” and x=Q

0
To prove the above theorem, we need the f

lemma.

Lemma 6

U=_k121—k222 c—k,2, k=R, €N (30)
Thus, the complete closed-loop system of
obtained as follows:

7;‘ ::; .. s z Z:;
2| = . 2(+| - |@D
2... —k + l+ - la Zn )

1T My kn+ Myn My,

Now, we consider a design technique to s

Suppose a distribution DI"* where T,= f,+ag+4rthe system (44). We want to obtain cond

e=8¢ is defined as

DI"*=span( adyg -ad% '), ken. 23)
Then for each peBP and x=Q, if the distributions
D,—T";( t=1,2,....k ) are all involutive, then

D{*=D}* ke, 24)

at each x€Q .

0
(Proof of Theorem 5)
Sufficiency: For the linear system with
parameters (34), the distribution D, ..., D,a
are the following flat distributions, defined

Di*'=1Im{bl Aul-IAN'OICR", ken  (25)

where the superscripts A,.» indicate
dependence on the vector f
Az=(A+M(p)zand b.

Clearly, the distributions D2*, ken, a

involutive. Since it follows from (36) and th
(0rad,gX2)=(-1)*ALs where 7,=7+4f that

DI*=(0)~'D{*( 0™ (x)) 26)

where (02)7D"*(0"(x)) = {X(x) | 02X(x) & D/},
we conclude that all the distributions D/
are also involutive. By Lemma 6, it follo
involutiveness of distributions D%, kex
DI*=D{"* . Therefore, we have

dim D**= dim D" = dim In{b|--|AL %) =n. (27)
Necessity: Assume that the linear system
controllabie. Then we have

dimD;'"* = dim Im{b| A bl--|AL B} =n, ke g (28)
However, the distributions D/’ kexn

equivalently involutive in 2. Thus by Lemm
have
dim D% = dim D™ ¥ = dim D" =n.  (29)
00O
To stabilize the linearized system (34), we
a new input » of the form

all characteristic roots of the system to b
in the left half plane despite the vari
parameters mg i=0,1..,n, jen. If we can ch
the feedback gain %, %, -, k, which forc
family of characteristic polynomials of (4
Hurwitz, then the closed-loop system (44) i
stabilized. The study of polynomial rob
results has been active in recent years
number of useful results have been obta
Kharitonov’s Theorem is a powerful resu
enables the robust stability of an interval p
to be determined by checking only four
polynomials.
3. Conclusion

Necessary and sufficient conditions for t
class of uncertain nonlinear systems that
linearized by the given nominal state trans
and the feedback linearizing controller h
discussed. The proposed condition is differ
previous matching conditions. If a u
nonlinear system satisfies the proposed ¢
the system can be transformed into a linea
with uncertain parameters and thus be
stabilized by a regular static feedback contr
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