버 직파제배시 도복과 관련된 형질 특성 *b**č진홍원 김 현호

Characteristics of Lodging Related Traits of Direct Seeded Rice

Chungnam Provincial RDA: Hyun - Ilo Kim

Objectives: To analysis which factors relate to lodging characteristics using different varieties(Korea, Japan, USA) in direct seeded rice

Materials and Methods

Different 9 Varieties; Gancheok Nongan, Dongjin of Korea, Hitomebore, Hatsuboshi, Koshinikari of Japan, M202, Calrose, Caloro, of USA, were used for this experiment.

Number of seedling, leaf age were counted and Photosynthetic rate was measured at 7 main leaf stage using Koito Intelligent Potable Porometer(KIP-8510 version 2.03)

Internode length, stem weight, pnicle weight, stem diameter, culm length breaking strength were measured. All the breaking strength were measured in two ways. One for at the third internode from the top and the other at 10cm from the plant base(based on soil surface).

Cross sectional area was culculated by π ab(where a is half dimeter of longest axis, b shortest axis. Lodging index(L.I) was calibrated by monent/breaking strength.

Cell wall constituents, starch, lignin and cellulose were determined by detergent analylictical method. Statistical methods, correlation and path coefficiant analysis were adopted among the collected data.

Results and discussion

Regarding characteristics of lodging there are many factors, and formated very complicated as a spider line. It should be considered not only single factor but multiple factor.

The stem diameter was highest in Caloro followed by Nongan, M202 and Calrose.

All the USA variety was higher than the others in stem dismeter.

In case of culm wall thickness, as shown stem diameter, it was same tendency. The caloro was obtained highest record in thickness of culm wall. Above two factors are the one of more important traits relation to lodging directly.

The highest 'breaking strength, 1442g, was record in Caloro and Gancheok Dongjin, transplanted hatsuboshi were observed over 1,000g. After all lodging index was lowest in Hatsuboshi followed by Nongan, Gancheok, and others. Even though breaking strength of USA variety was higher than others, lodging index was high regardless of breaking strength. By the way that parameter dosen't always adapt all the case to express lodging with combined different cultivars. Among the 9 varieties, there were no significant in content of starch but Calrose, Caloro, Dongjin and Koshihikari tended to be higher than others. Relationship between the Cellulose and breaking strength was observed high correlation. With content of lignin, there were very close correlation. In case of culm base weight and lignin and breaking strength, they showed positive correlation.

High content of lignin and cellulose were determined in Nongan, Hatsuboshi(T), Calrose and Caloro. Regarding function of Lignin, it is a hydrophobic materials, enveloping microfibris and matrix polysaccharides which thicken the wall, cross linked polymers so that the wall becomes very stiff. In lodging Characteristics, stem diameter, thickness of culm wall, bending monent, culm length, breaking strength, cellulose, lignin and culm base weight were close related to lodging index. However most effective characters were summarized by culm length, S tem diameter, thickness of clum wall, and top plant weight among all the varieties according to path coefficient analysis.

table 1. Varietal difference in seedling stand, photosynthetic rate, heading date and No. of panicle under the direct seeding cultivation.

	Established seedling rate (S)	Photosynthetic ¹⁾ rate (mg.co ₂ /dm ² /hr)	Heading date	Number of panicle per m²
Gancheok	87	22. 7de	Aug. 18	393b
Nongan	92	26. 4ab	Aug. 13	295c
Dongjin	93 93	25. 8abc	Aug. 20	395b
Hi tomebore	93	24.6bcd	Aug. 8	467a
Hatsuboshi,	94	23, 6cd	Aug. 7	467a
Hatsuboshi	τ) -	25. 2abc	July 31	381b
Koshihikari	93	22. 4de	Aug. 13	400b
M202	86	27. 5a	Aug. 6	393b
Calrose	95	20. 8c	Aug. 18	440a
Caloro	95	25, 1abc	Aug. 25	437a

Table 7. Correlation coefficients of dry weight and content of cell wall material with breaking strength of culm base of direct seeded rice

Trait	Culo base ^{A)} weight (g)	Starch ^{B)}	Cellulose ^{c)} (¤)	Lignin ^{D)} (%)	Breaking ^{E)} strength (g)
(B) (C) (D) (E)	-0.235 0.487 0.779¢ 0.684¢	0. 429 0. 306 0. 280	0. 667º 0. 689º	0.940**	

o, oo : Significant at 5% and 1% level, respectively

Table 9. Correlation between the traits related to lodging and Lodging Index within a same variety in direct seeded rice

Variety	Culs length (cs)	Top plant weight (g.FV)	Sten diameter (am)	Thickness of culm wall (BB)	Rate of central gv.	Breaking strength (g)
Nongan	0.867°°	0.728°	-0. 760°°	-0.517	0.672°	-0.923°°
Hatsuboshi	0.764°°	0.672°	-0. 587	-0.340	-0.478	-0.894°°
Calrose	0.913°°	0.780°°	-0. 832°°	-0.673	0.714°	-0.913°°

o, oo: Significant at 5% level and 1% level, respectively

with lodging in direct seeded rice of different 9 cultivars. characters related ٥ Variation ġ, Table

	Lodging	122 122 133 104 134 135 137	
	ng igth(G) Outn base	1081 1236 1085 803 803 803 803 1151 772 772 925 1129 1129	
	Breaki strer		
	reight f basal node (g/6cm)	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
	Dry W·CL/A (R·CD)	7178 5061 7353 9150 6685 5438 1107 1107 7403	
	(g.ca/ma)	224 235 232 196 196 151 151 187 332 255 255	
	(8/ca) (8	0.137 0.178 0.178 0.103 0.125 0.123 0.123	
	Mosent (V·CL) (g·cs)	681 744 750 625 625 533 775 775 775 997	
	Rate of Central Y gravity (x)	64444446 664466 6646 66466 66466 66466 66466 66466 66466 66466 66466 66466 66466 664	
	Ra Central gravity (CE)	24444444444444444444444444444444444444	1-111-00
	ickness 2010 val1 (00)	0.84 0.77 0.77 0.88 0.78 0.88 1.07	micol Obdana
	Th (cm²)	0.095 0.147 0.102 0.06 0.070 0.070 0.125 0.112	
	Sten diameter (mm)	6.4.6.7.2.6.6.6.4.4.3.2.2.2.3.2.2.3.3.2.2.3.3.2.2.3.3.3.2.3.3.3.2.3	(T): Transmission
	ariety	Gancheok Nongan Dong ji n Hi tomebore Hat suboshi Hat suboshi Koshi hikar ji M202 Cal rose Cal rose	T:(1)

653 888 888 788 788 788 788 788

seeding) seeding) æter. 37d:3rd internode bc⊐ of the plant base(based on soil surface) planted rice(25days seedli sectional area of culo bas length D: Ste⊡ diameter, as taken from the 10c⊡ of ું∻છં∺

ground

Table B.	Correlation coef	ficient a⊡ong	the chai	racteris	tics rel	ated v	ith lodg	ing in	direct see	ded ricee	
Character	Cuia Stea		(e) Central gravity (cm)	Rate of(f Central gravity (%)	Moment <w·cl></w·cl>	W/CL	(i) ry weight W·CL/D g·cm/mm)	W.CL/A	(k) Weight of basal (g/6cm)	(1) Breaking strength (g)	(m) L. I
BCDEFGHIJKLM	0.528 -0.7582 -0.6942 -0.537 -0.65100 0.6800 -0.012 0.77000 0.79100 0.348 0.012 0.009 0.054 0.7302 0.261 0.76600	0.859xc -0.183 -0.318 -0.555 -0.636x 0.361x 0.647x 0.857xx 0.645x 0.327 0.160 0.064 0.084 0.822xx 0.801xx 0.852xx 0.881xx 0.023 -0.542	-0.374	-0.882** -0.151 -0.554 0.498 -0.526 -0.742**	0.312 0.782** 0.090 0.454	-0.070 0.738* 0.707*		0.143 0.296 0.109	0.906** -0.569	-0. 558	

⁽T): Transplanted rice(25days seedling)

⁽T):Transplanted rice(25days seedling)

1) It was measured on the 7th leaf stage

:Means within a column followed by the same letter are not significantly different at the 5% level by DMRT