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INTRODUCTION

Mucus in the airway plays an important role in the defense of the lung against airborne
particles. Particles normally are trapped in the luminal mucus layer and constantly removed
from the airway by ciliary beating, a process called mucociliary clearance. Maintenance of
the normal mucociliary function depends on the viscoelastic property of mucus which is
determined mainly by the quality and quantity of mucous glycoproteins or mucins present in
the mucus. Therefore, any abnormalities in either the quality or the quantity of mucins may
result in the development of pathologic airways which often lead to deaths of patients, as
seen chronic bronchitis, asthma and cystic fibrosis. Airway mucins are thought to be
derived from PAS-positive secretory granules ("mucous” granuies) found in two different cell
types in the airway; goblet cells of surface epithelium and mucous cells of submucosal
glands. Therefore, mucins present in the airway lumen are a mixture of mucins secreted
from the two different cell types. Details of the anatomy of the airway are described in this
review series by Dr. Peter Jeffery. In this particular section, we will focus on the goblet cell
mucin, more specifically, our current understanding of its structure and secretion. For
additional information, refer to other review articles (1-4).

STRUCTURE OF AIRWAY GOBLET CELL MUCINS

Since airway mucins are a mixture of mucins secreted from the two different cell types,
it was practically impossible to purify the goblet cell mucins from airway mucus. Therefore,
the structure of airway goblet cell mucins was initially defined based mainly on
cytochemistry in which the secretory granules are stained with various dyes depending on
the degree of acidity of mucins (5,6). Such studies indicated that goblet cell mucins (or
epithelial mucins) contain neutral, sialylated, and sulfated sugars, and that the distribution of
these mucins vary greatly depending on animal species. Biochemical characterization of
the epithelial mucin was made possible only after successful isolation and culturing of these
cells. For details of the TSE cell cuiture system, see a review by Dr. Reen Wu in this series.

A. Characterization of epithelial cell mucins

Among various species that have been reported, the hamster tracheal surface epithelial
(TSE) cell culture system has been most extensively studied for the biochemistry of
epithelial mucins. Details of hamster TSE cell cultures were described in references #7-9. It
is important to mention that production of mucins from cultured TSE ceils requires growing
these cells on a thick matrix such as collagen gel (10) as well as the presence of vitamin A
in the culture medium (8). TSE cells grown under these culture conditions constitutively
secrete mucins at confluency and the secreted mucins have the following physicochemical
characteristics (8,11): (a) O-linked glycoproteins, i.e., the glycosidic linkage between N-
acetylgalactosamine of the oligosaccharides and serine/threonine of the protein backbone,
(b) sugars consisting of N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose and
sialic acids, but no mannose, (c) the presence of poly(N-acetyllactosamine) moiety (12), (d)
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the extreme heterogeneity in both size and charge, the latter being due to the presence of
sulfate and sialic acid, (e) resistance to proteoglycan-digesting enzymes, (f) a buoyant
density of about 1.5 g/ml (13,14), and (g) relatively enriched in serine, threonine and proline
(13,14). It is important, however, to note that most of the above characteristics are based
on the carbohydrate structure and that lack of structural information regarding the protein
backbone led to serious arguments over the identity of these mucins secreted by TSE cells.
Mucins produced by these cultures used to be referred to as “high molecular weight mucin-
like glycoproteins” and often confused with one of the proteoglycans, especially type |i
keratan sulfate proteoglycan. Details of the structural differences between these
glycoconjugates are described elsewhere (1, 3).

B. Hydrophobicity of epithelial mucins

There are several lines of evidence that suggest that mucins produced from
TSE cells are extremely hydrophobic. First, secreted mucins are associated with
various kinds of lipids (15,16). Second, ultrastructural studies of mucins showed localization
not only inside secretory granules but also on the secretory cell surface, and a significant
portion of the cellular mucins was associated with cell membranes as external glycoproteins
(9,17). Most (about 97%) of the lipids associated with mucins can be dissociated by a
coinbination of heating and detergents (13), indicating that they are non-covalently bound.
However, about 3% of the lipids require alcoholic KOH
treatment for dissociation,; this dissociated lipid has been identified as palmitic acid
(unpublished data) suggesting the presence of covalent binding as previously shown in
intestinal mucins (18). Lastly, secreted mucins are associated with "small" molecular weight
glycoproteins via non-covalent hydrophobic interactions (15). It appears that these
molecules are associated with mucins prior to exocytosis, most likely within the secretory
granules (19). Such a notion may be supported by the presence of endoperoxidases (20)
and protease inhibitors (21) within airway goblet cell secretory granules. Why and how
these non-mucin components are packaged together with mucins inside secretory granules
are unknown.

C. Genes encoding epithelial mucins

Seven mucin genes have been identified so far (see Ref #22,23 for review). A major portion
of each of the genes consists of variable numbers of tandem repeats (VNTR) of a defined
number of nucleotides. The VNTR are enriched with serine/threonine which are sites for O-
glycosylation of mucin molecules. In the lung, four of these mucin genes, namely, MUC1
(24,25), MUC2 (26,27), MUC4 (28,29) and MUCS5 (30,31), have been shown to be
expressed. According to Human Genome Mapping convention, the mucin gene loci should
be designated with the letters MUC, followed by a number reflecting the order in which the
genes were cloned. Among the four mucin genes, both MUC2 and MUCS5 mucins appear to
be major candidates for secreted epithelial mucins since their mRNAs have been shown to
be present in airway epithelial cells (31-35). Interestingly, the level of MUC2 expression was
low in cultured primary TSE cells (33) and was transcriptionally downregulated in the
presence of vitamin A (32) which is known to cause mucous cell differentiation in cultured
TSE cells (8). In addition, the expression of MUC2 was upregulated after treatment of either
cultured airway epithelial cells with TNF,, (33) or the intact airway with products of
Psudomonas aeruginosa (34), which suggests that expression of MUC2 gene may be
associated with airway inflammation or infection, perhaps secretory cell metaplasia of the
airway epithelium. On the other hand, expression of MUC5 has been shown to be
increased by the presence of vitamin A in cultured rat TSE cells (35). Taken together,
airway epithelial mucins are encoded at least by two MUC genes - MUCS5 responsibie for
mucins normalily secreted and MUC2 for mucins produced during airway inflammation. No
direct evidence, however, is yet available. Finally, MUC1 mucins might be another
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candidate for the secreted epithelial mucins, since these cell surface mucins have been
shown to be released by tumor cells (36).

REGULATION OF GOBLET CELL MUCIN RELEASE

Pharmacology of airway mucin secretion has been reviewed elsewhere (1-4, 37-42). In
general, secretion of mucins from airway epithelial cells can be stimulated by three types of
secretagogues; irritant gases, inflammatory agents, and those which do not belong to the
formers.

A. Irritant gases

Chemical irritants are well known for their stimulatory effects on airway goblet cell mucus.
Mucous granules of airway goblet cells were released by tobacco smoke in intact rat (43)
and guinea pig (44) airways and also by sulfur dioxide inhalation in intact canine airways
(45). Ammonia vapor stimulated mucin release from intact cat tracheas (46). Inhaled
irritant gases such as sulfur dioxide, nitric oxide, or ammonia will be dissolved in airway
luminal fiuid changing the fluid pH to acidic or alkaline. In cultured hamster TSE cells,
medium pH of either below 4 or above 9 caused mucin release as a result of plasma
membrane damage (47).

B. Inflammatory mediators

Airway inflammation is a complex event which involves a cascade of reactions between
various inflammatory mediators and various cell types in the lung. For details, see a review
by Dr. Kenneth Adler in this series. Since airway inflammation is always accompanied with
mucus hypersecretion, any agent which causes the inflammation will likely stimulate mucin
release from the airway, either directly or indirectly. Availability of airway epithelial cell
culture systems has made it possible to study direct effects of individual agents on mucin
release at cellular and molecular levels. Use of primary airway epithelial cell culture
systems for studying the pharmacology of goblet cell mucin release was reviewed previously
(48). In this section, we will focus mainly on inflammatory agents which have been shown to
stimulate mucin release by acting directly on the goblet cells.

(a) arachidonic acid metabolites

Prostaglandins E, and F,,, and ieukotrienes C, and D, did not influence mucin release
in cultured hamster TSE cells, (47). However, in cultured guinea pig TSE cells, mucin
release was stimulated by prostaglandin F,, (49). In intact guinea pig airways, inhaled
leukotriene D, caused release of mucous granules from goblet cells (50).

(b) platelet activating factor (PAF)

PAF has been shown to induce mucin release in rodent tracheal organ cultures as well
as in human tracheal organ explants by seemingly two different mechanisms: (a) an
increased intracellular leukotriene production by mucin-secreting cells which seems
responsible for their own mucin release in rodent tracheal organ explants (51), and (b)
extracellular leukotrienes released from other cells by PAF which in turn act on mucin-
secreting cells in human tracheal organ explants (52). PAF has also been shown to release
mucin by stimulation of lipoxygenase metabolism of arachidonic acid to HETEs in guinea pig
TSE cells (63) and by activation of protein kinase C in cultured canine TSE cells (54).

(c) tumor necrosis factor alpha (TNF,)
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TNF, has been shown to stimulate mucin release from human airway epithelial cells
(33) as well as from cultured guinea pig tracheal epithelial cells (55) through activation of
nitric oxide synthase (55).

(d) proteases

Proteases released from bacteria which are associated with obstructive pulmonary
diseases have been shown to release mucins from cultured tracheal organ explants of
rabbits (56) and from guinea pig tracheal explants (57), via proteolytic damage on the apical
cell membrane or an apocrine mechanism (56). Human neutrophil elastase released
mucins from hamster tracheal organ explants (58) and also in cultured hamster TSE cells
(17) via proteolytic cleavage of mucins bound to the apical cell surface (17, 59). Whether or
not these cell surface mugcins are encoded by MUC1 gene remains to be elucidated.
Elastase from the porcine pancreas, however, had no such effects (17).

(e) reactive oxygen species

Superoxide, which is produced by activated neutrophils during airway inflammation, has
been shown to release mucins from cultured guinea pig TSE cells via increased PGF,,
production by the TSE cells (49). Neither hydrogen peroxide, a major product of
superoxide, nor free radicals derived from hydrogen peroxide had any effect on mucin
release in the same system. Although there has been no direct demonstration that epithelial
mucin release is induced by nitric oxide, Adler et al. (55) has reported that intracellular
production of nitric oxide is necessary for the increased mucin release by some
inflammatory agents such as histamine, PAF, TNF,, and superoxide.

(f) nucleotides

Nucleotides are present in high concentrations inside cells (>5 mM ATP in the cytosol)
(60). Therefore, it is likely that the inflamed airway also contains high concentrations of
nucleotides as a result of massive cell injuries. Some purine nucleotides have recently been
shown to stimulate mucin release from cultured hamster TSE cells via a P, purinoceptor-
mediated mechanism (61-63). ATP, a prototype agonist of the P, purinoceptor, released
mucins by activation of phospholipase C (PLC) which is coupled to the receptor, at least in
part, via pertussis toxin-sensitive G protein(s) (64). A downstream pathway of ATP-induced
activation of PLC seems to involve activation of protein kinase C (PKC) via diacyglycerol,
but not the IP5-Ca™" pathway (65). Kai et al. (66) also showed that activation of PKC can
induce mucin release from hamster TSE cells. In contrast, Larivee et al. (54) failed to
stimulate mucin release by activation of PKC in canine TSE cells. Finally, activation of PKC
by ATP appears to activate phospholipase A,, which in turn causes mucin release (67). Itis
important to note that this PLC-PKC pathway, however, accounts for only 50% of ATP-
induced mucin release (65), which suggests the presence of another as yet unknown
mechanism for ATP-induced mucin release. Both binding kinetics of ATPyS**in cultured
TSE cells (68) and the comparison of ATP and UTP in their mucin releasing activity (69,70)
indicate that mucin release by nucleotides is mediated by P, receptor.

C. Others

(a) neuronal control

Airway epithelium is free of autonomic innervation. Therefore, it is not likely that
neurotransmitters released from these nerve terminals have any direct influence on airway

goblet cells. In the isolated cat tracheal epithelium sheet, goblet cell mucin release was not
stimulated by either adrenergic or cholinergic drugs (71). Mucin release from cultured
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hamster TSE cells was also resistant to virtually all the neurotransmitters tested (1).
However, in intact guinea pigs, vagal stimulation of the airway caused goblet cell granule
exocytosis indicating the presence of neural control of goblet cell mucus secretion (72). In
the same system, goblet cell granule exocytosis was also induced by either capsaicin or
substance P, most likely through local axonal reflexes in which capsaicin causes release of
neuropeptides from sensory nerves and the released neuropeptides induce mucus
discharge (73). Both of these pathways seem to be involved in cigarette smoke-induced
airway goblet cell secretion in intact guinea pigs (44). Substance P, however, could not
induce mucin release from cultured hamster TSE cells (unpublished data).

(b) mechanical strain

Hypo-osmolarity increased mucin release while hyper-osmolarity decreased it in
cultured hamster TSE cells (47). On the other hand, contraction of the gel upon which TSE
cells were cultured induced mucin release without causing cell damage (73). Since both the
osmolarity change and the gel contraction can cause mechanical strain on secretory cells,
the mechanical factor might be a cause of mucin release under the above experimental
conditions. Such situation might exist in vivo; in light of the fact that airway epithelium is
physically associated with underlying smooth muscles, contractility of airway smooth
muscles either tonically or under various conditions including coughs or inflammation likely
causes mechanical strain on goblet cells which may result in an increase in mucin release.
The former situation, namely, the basal contractility of airway smooth muscles might be an
important regulator for "physiological" secretion of airway goblet cell mucins in vivo.

Finally, It is important to note that there is as yet no accurate method to quantify the
mucins due to the heterogeneous nature of the molecules. The information obtained using
one type of assay may be totally contradictory to that obtained by another type of assay
(see Ref #3 for review). In other words, the heterogeneity of the mucin molecules seems to
make it necessary for us to understand in detail the function of individual mucins - based on
both the protein backbone and carbohydrate structure - and then to focus on the regulation
of individual mucins in addition to the total mucins. This potentially crucial problem can be
resolved only when the structure of epithelial mucins is clearly defined.

PERSPECTIVES

Availability of airway epithelial cell culture systems has allowed us to begin to study
airway epithelial secretions at the cellular and molecular levels. However, it is important to
fully understand the culture system before using it as an in vitro model, since these mixed
cells grow and differentiate totally differently depending on the culture conditions such as the
matrix, the culture medium, and the polarity. Due to the limited amount of information, it
may be premature to develop any molecular model of airway goblet cell mucin secretion at
this moment. Nevertheless, there are a number of important questions which may be
answered using one of these culture systems, preferentially the air-liquid biphasic culture
system. These include: (1) which MUC genes encode the secreted mucins and how are
these mucins regulated at the transcriptional and translational levels? (2) What are the
conditions and mechanisms for the constitutive and the granule secretions? (3) What
substances are present in the secretory granules and what are their roles ? (4) What is the
role of mucins present on the cell surface? (5) Is the goblet cell membrane polarized in
terms of its responsiveness to various secretion modulators? (6) why are there two different
types of mucous cells in the airway which secrete the mucins into a common pool?

It is worth emphasizing that, despite the advantages the cell culture system can provide

in terms of stability and relative homogeneity of the cell population, it has possible
limitations, especially when one uses the cell culture as a model for studying certain
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functions in vivo. This seems to be especially important in studying the regulation of airway
goblet cell mucin secretion.
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