A Study on the Stress Relief Cracking of HSLA-100 and HY-100 Steels

HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구

  • Published : 1996.05.01

Abstract

A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at 66$0^{\circ}C$ for HY-100 steel and thermal cycled from 135$0^{\circ}C$ In $25^{\circ}C$ with a cooling time of $\Delta$ $t_{800^{\circ}50}$ $0^{\circ}C$/=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of 570~62$0^{\circ}C$. The time to failure( $t_{f}$) at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility.y.

Keywords