An Application of Realistic Evaluation Methodology for Large Break LOCA of Westinghouse 3 Loop Plant

  • 발행 : 1996.05.01

초록

This report presents a demonstration of application of realistic evaluation methodology to a posturated cold leg large break LOCA in a Westinghouse three-loop pressurized water reactor with 17$\times$17 fuel. The new method of this analysis can be divided into three distinct step: 1) Best Estimate Code Validation and Uncertainty Quantification 2) Realistic LOCA Calculation 3) Limiting Value LOCA Calculation and Uncertainty Combination RELAP5/MOD3/K [1], which was improved from RELAP5/MOD3.1, and CONTEMPT4/MOD5 code were used as a best estimate thermal-hydraulic model for realistic LOCA calculation. The code uncertainties which will be determined in step 1) were quantified already in previous study [2], and thus the step 2) and 3) for plant application were presented in this paper. The application uncertainty parameters are divided into two categories, i.e. plant system parameters and fuel statistical parameters. Single parameter sensitivity calculations were performed to select system parameters which would be set at their limiting value in Limiting Value Approach (LVA) calculation. Single run of LVA calculation generated 27 PCT data according to the various combinations of fuel parameters and these data provided input to response surface generation. The probability distribution function was generated from Monte Carlo sampling of a response surface and the upper 95$^{th}$ percentile PCT was determined. Break spectrum analysis was also made to determine the critical break size. The results show that sufficient LOCA margin can be obtained for the demonstration NPP.

키워드