NUMERICAL ANALYSIS ON THE NATURAL CONVECTION IN A LONG HORIZONTAL PIPE WITH THERMAL STRATIFICATION

  • Published : 1996.05.01

Abstract

In this paper, the steady 2-dimensional model for a long horizontal line with different end temperatures undergoing natural convection at very high Rayleigh number is proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm which is developed using control volumes and staggered grids. The numerical results are verified by comparison with the operating PWR test data. The analysis focuses on the effects of variation of the heat transfer rates at the pipe surface, the thermal conductivities of the pipe material and the thickness of the pipe wall on the thermal stratification. The results show that the heat transfer rate at the pipe surface is the controlling parameter. A significant reduction and disappearance of thermal stratification phenomenon is observed at the Biot number of 5.0$\times$10$^{-2}$. The results also show that the increment of the thermal conductivity and thickness of the wall weakens the thermal stratification and somewhat reduces azimuthal temperature gradient in the pipe wall. Those effects are however minor, when compared with those due to the variation of the heat transfer rates at the surface of the pipe wall.

Keywords