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Abstract

The genetic algorithm(GA) is applied to the design of the nuclear power control system.
The reactor control system model is described in the LQR configuration. The LQR system
order is increased to make the tracking system. The key parameters of the design are
weighting matrices, and these are usually determined through numerous simulations in the
conventional design. To determine the more objective and optimal weightings, the improved
GA is applied. The results show that the weightings determined by the GA vyield the better
system responses than those obtained by the conventional design method.

1. Introduction

The control design techniques have been changed significantly over the last decade. Although the
PID control has been used and proved to be powerful in various fields of the application, new control
techniques are widespread at present with the computer aided control design. One of the control
techniques which could replace the present PID is the linear quadratic regulator (LQR) method. This
method is an important subset of the powerful machinery of the optimal control of Wiener-Hopf-
Kalman. The plant is assumed to be a linear system in state space form and the objective function is a
quadratic functional of the plant states and control inputs. In the LQR problem, the design problem
boils down to the determination of the optimal weighting matrices. The usual practice is to trade off
the various conflicting state variables through numerous simulations. This implies that the LQR
design, although it is a synthetic machinery, is somewhat subject to the designer’s experiences and in
the worst case, it may be a blind search. Even after the satisfying design is obtained, the question of
whether the determined weighting matrices are the “best” ones still remains.

With this regard, an effective optimization tool, the GA, is employed to determine the weighting
matrices of the LQR system. The GA emulates the biological evolutionary theories to solve the
optimization problems. By using the three major operators of reproduction, crossover and mutation
which are analogous to the biological processes, it searches the optimal design parameters of the given
problem. Since the GA algorithm does not depend on the coupling between the parameters, it
provides the more flexibility.

This paper describes how the GA is used to the design of the nuclear reactor power control system.
The control scheme is fashioned into the tracking system by use of the LQR with considering the
Gaussian noises. The overall scheme is described in 6 dimensional matrix equations and its
corresponding weighting matrix are determined by GA. The results are then compared with those of
conventional approaches.
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2. System Modeling
2.1 LQR/LQG System

The plant of the nuclear power control system is modeled by employing the one delayed neutron
group point kinetics equation. Also the singly lumped energy balance equations are used to reflect the
temperature feedback effects in the plant itsclf. This system is MIMO (multi-input, multi-output) and
has five state variables. By assuming that the coolant inlet temperature and the coolant flow rate are
constant, and by controlling the output matrix, the system becomes SISO (single-input, single-output),
and has the form of

i=Ax+Bu, y=Cx
where x is the state variable vector, A and B are systein matrices, and u is the system input.

The system matrices are functions of the nuclear properties as well as of the thermal hydraulic
properties of the system, hence depends on the reactor power. The input, u, is the scalar and stands
for the control rod velocity. It can be shown that the eigenvalues of A vary with the reactor power.
As the power becomes low, the most sensitive eigenvalue approaches to the jo axis, which indicates
the fact that the system is harder to control at low powers. The system described above is the
continuous system and it is digitalized with the sampling period of 0.05 sec. For this digitalized plant,
the LQR design is made. The cost function of the LQR is

i= —;-Z(x(k)TQx(k) +u0oTRu(k))
where Q is the state weighting matrix of 5 by 5, and R 1s the input weighting scalar. And it should be
noted that the system performance depends on the relative values of Q and R, rather than their
absolute values, R is fixed as 1.0, and the design problem is to determine the Q.

The basic premise of the LQR is that all states be available for the feedback. In practice, not all the
state variables are available for the direct measurement, and it is necessary to estimate the
unmeasured state variables. With the augmentation of the estimated variables, the system is
described as )

E(k) ="PE(K)+Av, ¥(k)=TEkK)
where E(k)is [ x £]7, ¥ and A are functions of the LQR feedback gain and the observer gain.

2.2 Tracking System

The LQR/LQG system is a regulating system. But the actual system should be a tracking system in
which the output of the system follows the input command system. Two schemes could be
considered. One is the unity feedback system as described in Fig. 1. This system is made by locating
the LQR/LQG controller on the inner feedback loop, and the output is feedbacked to generate the
error signal. An integrator and power-to-rod velocity gain are also incorporated. This system is
simple, but the number of design parameters increases because of the feedforward gain. Further it is
found that there is a limitation on the feedforward gain for the system stability, and the system
response is very sensitive to the gain value. This indicates the system is susceptible to the setting
point drift and is not desirable with respect to the robustness.

Another system configuration is the order increased regulating system (OIRS), which is described
in Fig. 2. The error between the command input and the system output is integrated and is augmented

—381-



to the estimated state variables out of the observer. Then the LQR gained signal is feedbacked to sum
with the input command signal. The number of state variables increases by one because of the error
signal, and the order of LQR weighting matrix increases from 5 to 6. This configuration seems to be
complex, since the system order is increased and the feedforward gain is included. However, simple
math shows that the feedforward gain has the effect only on the system zeros, and could be dropped
off from the system.
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(=L
+
Figure 1. Configuration of Unity Figure 2. Configuration of Order Increased
Feedback System Regulating System

Then the number of parameters to be determined is the same as that of the unity feedback
configuration. Since the overall system is described in the LQR, the system has a sufficient margins,
which is an intrinsic advantage of the LQR. The cost function of the of the OIRS is

1 .
Js = 5 Z{xs07 Qs x5(k) + uk"Rgu(k)) , where xs(k) = ((k) w(k))

The optimal feedback gain vector of the OIRS is K =(K Ky), where K is feedback gain

corresponding to the LQR system, and Kv is the gain which is applied to the error signal. With the

input weighting Rs be equal to 1, the design of the power tracking system boils down to the
determination of the state weighting matrix, Qs.

3. Application of Genetic Algorithm to the Determination of Weighting Matrix

In the conventional design, Qs is determined along with the design procedure. With the assumption

Q
0

Then gs , which reflects the error integration effects, is found during the OIRS design. This implies

the limitation that the two design steps of the LQR and the OIRS has no coupling, which is not always
true. The system matrices of the OIRS are function of the original LQR system matrices, feedback
and observer gains, as well as of the feedforward gain. If the feedforward gain is employed to control
the locations of zeros, the LQR and the OIRS are coupled each other, hence the determination of Qs
is somewhat involved. Further, even there be no coupling, the elements of Q and qs are determined
through various simulations and the final proper values are selected by exercising designer’s

. 0
that Qs has the form of Qg = ( q ) , Q is first determined in the process of LQR/LQG design.
S.
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discretion. And, even the system works well, the question whether that design is the best one still
remains.

The GA which was first proposed by J. Holland in 1975 and revived by D. E. Goldberg in mid 1980
has proven to be a useful tool in a varicty of search and optimization problems over the last years[1-3].
GA is based on the survival-of-the-fittest principle in nature. GA maps a problem onto a set of binary
string to represent a candidate solution called an individual. Each solution is associated with a fitness
value to measure how good it is. GA then manipulates the most promising strings to search the
improved solutions. Ultimately, GA differs from traditional searching techniques in several aspects as
follows;

- GA is the direct searching method independent of the coupling of design parameters and does not
need the intensive system information such as the derivatives of the system.

- GA makes use of the probabilistic search and not the deterministic one. Owing to this feature, it
can escape from the local traps, but may tend to wander around the true solution.

- GA operates on several solutions simultaneously (concurrent multi-point search), gathering
information from current search points to direct subsequent search.

To apply the GA to the determination of the weighting matrices of the LQR system, the problem is
formulated as follows ;

Find X = [x1,x2,x3,x4,x5,9s]

to maximize fitness(X) = 1/cost(X)

subject to cost(X) = ”yo - y(t)ldt + ”u(t)‘dt
1.%10%< x;<1.#¢10%,i=1,2,...,5
1.#10%<q, < 1.*10?

where,

X : an individual or a candidate solution

X; : diagonal elements of the assumed weighting matrix Q

q,: assumed value for error integration effect

cost(X) : cost function for the individual X

fitness(X) : fitness of the individual X

Yo : target value

y(t) : system output

u(t) : control input

Through out the repeated generation changes in GA, the average fitness of the candidate solutions
in the population gradually increases. That is, the quality of the solutions are improved toward an
unknown optimal one. The major improvements made on the simple GA are : 1) the adoption of
variable crossover site, 2) the usage of an ‘interpolation scheme’ instead of the bit-wise crossover to
avoid the hamming-cliff effects, 3) the adoption of the fitness scaling and the roulette-wheel selection
scheme based upon the scaled-fitness, 4) the re-initialization of the population per every 5 generation
changes with the best POP_SIZE solutions which have been already found and stored, and 5) in
addition to the elite-policy, the introduction of a new GA operator named ‘exchange’ to avoid pre-
maturing to a local optima.
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4. Application Example

Figures 3 and 4 show the responses of the OIRS for the case of conventional design. Figure 3
describes the reactor output, when the power is step increased by 10 % from the initial state of 90%
power. The peak value of the output is sufficiently low than the 103%, which is set forth by the
FSAR[4]. The transient of the control effort, that is the relative control rod velocity, is shown in Fig.
4. This transient is much milder than that of the unity feedback system. The elements of Q and the
integrator weight gs are determined as 3.x107%. ¥(5) and 0.003 , respectively, where I indicates the
identity matrix. All these results are obtained through numerous simulations, and it can not be
affirmed this design is uniquely the best.

On the other hand, Figs. 5 and 6 show the results of the GA design. The overall responses are quite
similar to those of Figs. 3 and 4. But the weighting values are different from those values obtained by
the conventional approach. Figure 7 shows how the weighting values are updated and converged as
the generation proceeds. After about the 35-th generation, there are no significant changes in the
weighting values. The effectiveness of the GA can be found in Fig.8. The ‘improvement’ in the
figure indicates the relative values of the fitness of GA to the ‘best’ result obtained by conventional
approach. Although the GA gives the poor relative fitness value of approx. 0.85 at the initial stages ,
it soon exceeds the fitness of conventional design. After the 20-th generation, 21% of improvement is
achieved although the results of each approach seems to be similar as shown in Figs. 3 - 6.

S. Conclusion

The GA is applied to the nuclear power control system. The control model is set up in the
machinery of the LQR. To make the system output to follow the input command signal, the model
order is increased by on¢. The weighting values, which are the key parameters of the design, are
determined by the GA. The result of the GA approach shows that it can replace the conventional
method which requires the designer’s experiences and also is time consuming. Further the GA gives
the better results, once the cost function is determined and various forms of cost function can be easily
implemented.
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