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Abstract
The analytic function expansion nodal (AFEN) method has been successfully applied to
two~group neutron diffusion problems. in this paper, the AFEN method is extended to solve
general multigroup equations for any lype of geomelries. Also, a suite of new nodal codes
based on the extended AFEN theory is developed for hexagonal-z geometry and applied to
several benchmark problems. Numerical results obtained attest to their accuracy and applicability
to practical problems.

I. Introduction

Recently, the analytic function expansion nodal (AFEN) method has been developed by Noh and
Chol1,2]. The AFEN method, unlike the conventional nodal methods, does not suffer from the singularity
problem resulting from the transverse integration in hexagonal geometry(3]. In this method, the intranodal
flux is expanded in terms of analytic eigenfunctions of a Helmhoiz equation. Consequently, in multigroup
(more than two groups) problems, it is necessary to use complex eigenmodes as basis functions.
However, the original AFEN method cannot treat complex eigenfunctions effectively.

To overcome such a shortcoming of the AFEN method, an AFEN-PEN (Polynomial Expansion
Method) hybrid method was developed(4]. Although this approach works well in two-dimensional
rectangular geometry, it is complicated to use the hybrid method for the three—-dimensional hexagonal-z
geometry. In this paper, an algorithm which can treat the complex eigenmodes rigorously is proposed,
which can be used in any type of geometry. Using the new AFEN algorithm, a suite of nodai codes for
hexagonal-z geometry is developed and numerical results for several benchmark problems are reported.

Il. Theory and Methodology

A key point of AFEN method is to find the analytical solution of the muiti-group diffusion equations
in a homogenized node. Although AFEN method is not restricted to the shape of the node, we assume
in the following that the node is hexagonal. Without loss of generality, the G-group diffusion equations
can be written as

1

-v24+ A3=0, A=D [ Z-3— wE]. ()
off
where ; is a GX] vector and the notations are standard.
Let us introduce a new variable _é defined by
$=RE, R=[e, e,...... ,eql, ()

where e, is an eigenvector of A with corresponding eigenvalue Ag. Here, we assume that there is

no eigenvalue deficiency. Then, Eq. (1) is decoupled as follows :
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~v2E+ AE=0, A= diag(d,, A5, ...,AQ). 3)

The general solution of Eq. (3) can be written easily as

&= 2pahe™ P T ATy g=10,6, @

where 7= (x, y, 2) and 7;, is an arbitrary unit vector satisfying A%+ &5+ k%=1

If the eigenvalues are all real, the eigenmodes of Eq. (4) can be used as the basis functions. If
there are complex eigenvalues, efficient computation in AFEN method can hardly be achieved.

For this purpose, we need a new transform matrix T instead of R. let A;=a+ f and

A= a— fBj, where j denotes V—1. In this case, the following transform matrix T is introduced :

T=[Re(e)), Im(e), es, ..... ,ecl, (3)

If the new transform ‘matrix T is used, i.e., 7q§= T_é, we get a loosely coupled system of
equations similar to Eq. (3):

- - e B
—-VIE+ AE=0. A=
_ﬂ a
A3 . (6)
A

A

Letting \//1_1 =Va+ fi= *+(p+ ¢ and \/7; = *(p—qj), after some algebraic manipulations,

one can find the following general solutions :

é,(—;)= g[ al cosh(p _I;, . —;)cos(q 7:1 . .;)+a§ sinh(p -I;, - Psin(qg 7}, P+ -

aisinh(p % - Pcos(q % - P +alcosh(p E - Psinlg B+ ) 1,

&= g[ —alsinh(p %, - P)sin(q & - ~;’)+a§ cosh(p %+ Pcos(q i+ 7) ®

—alcosh(p k- Psin(g k- D +alsinh(p E - Peoslq - 7) 1.

It should be noted that real eigenmodes &, 723, can be obtained in the form of Eq. (4) since

they are completely decoupled.

Hl. Nodal Coupling Equations

The methodology described in the previous section can be applied to any geometry. However, in
this paper, hexagonal-z geometry is considered. Once the basis functions 51(7), g=1,2,...,G, are
obtained, the next step in AFEN method is to expand the intranodal flux in terms of these basis
functions.

The number of basis functions depends on the number of node boundary conditions to use. For
hexagonal-z geometry shown in Fig. 1, we consider 14 boundary conditions, which consist of 8
surface-averaged fluxes and 6 axial edge-averaged fluxes. Note that radial edge-averaged fluxes are
not considered to reduce the number of unknowns. In two-dimensional calculations, 6 surface-averaged
and 6 corner-point fluxes are nodal unknowns.

Considering the coordinate system in Fig. 1, we may choose seven direction vectors _/;, which

correspond to x-, y- a-, B~, u-, v-, and z-direction. Then, for a real eigenvalue, Eg(-;) in Eq.
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(4) with seven terms is used in the intranodal flux expansion, while two coupled real functions in Egs.
(7) and (8) with seven terms are used for complex eigenvalues.

| ..
46/1 ,, I
q p<E

\/?K u=-——=x-
Nk
bird-eye view of hexagonal-z node top view of hexagonal-z node

Fig. 1. Coordinate system and nodal quantities in hexagonal-z geometry

Now, we should express the expansion coefficients in terms of the nodal unknowns. This can easily
be done using the definitions of the nodal unknowns. Once all the coefficients used in the intra-nodal
flux expansion are determined, nodal coupling equations are needed to update node-averaged flux,
surface-averaged (radial and axial) fluxes, and edge-averaged (or corner-point) fluxes in the multi-node
problem.

Integration of the diffusion equation over a node leads to the nodal balance equation. The second
nodal coupling equations for the radial surface-averaged fluxes are derived by applying the current
continuity condition across interface between two neighbouring two nodes. The third nodal coupling
equations are derived by imposing current continuity condition on the axial interface. The fourth nodal
coupling equations are required to update the edge-averaged (or corner-point] fluxes. These equations
can be derived on the basis of the source free condition around an edge (or corner).

IV. Application to Benchmark Problems

Based on the generalized multigroup AFEN methodology, two nodal codes named AFEN-H1 and
AFEN-H2 were developed. In the AFEN-H1 code, both surface-averaged and edge-averaged fluxes in
addition to volume-averaged flux are solved. To circumvent the longer computing time, we also
developed AFEN-H2, where edge-averaged fluxes are not considered as the nodal unknowns. As can
be expected, numerical results show that AFEN-H1 can provide more accurate solutions than
AFEN-H2.

To improve accuracy of AFEN-H2, we introduce a semi-empirical factor which modifies an
eigenmode in AFEN method. From the numerical experiments, it is observed that the negative
eigenmode plays an important role in accuracy of AFEN method. Especially, truncation error resulting
from the large negative eigenvalue may have large effect on the AFEN solution since negative
eigenvalue usually appears in the multiplying medium with high reactivity. On the basis of the above
observations, we relax the negative eigenmode such as x,—~0.78x, for radial directions and

x~0.7lx, for axial direction. The relaxation factors were obtained via numerical tests on various kinds

of benchmark problems.
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Using the above modifications, two variants of AFEN-H1,2 are developed, which are denoted as
AFEN-HIR and AFEN-H2R, respectively. For AFEN-H1, relaxation is implemented only for axial
direction, since radial approximation in AFEN-H1 is already accurate.

The codes treat albedo boundary condition, which is defined as the ratio of net current to scalar
flux, i.e., J/¢. The codes uses Chebyshev extrapolation scheme in outer iterations and SOR
{Successive Over-Relaxation) in inner iterations. To test performance of the newly developed codes,
many benchmark calculations were done and several resultls are reported here. Resulls of AFEN
method are compared with those of other codes such as DIF3D(5] and VENTURE[S]L. All calculations
were done using the 1/6 symmetry (reflective and rotational) and convergence criteria were 1.E-07 for
reactor eigenvalue and 1.E-06 for fission source. The computational time includes input- and
output-processing times.

The first benchmark problem is a two-dimensional 4-group VVER-1000 core, which is defined in
Makai's paperl7]l. Numerical results for this problem are given in Table | The results show that
agreement of AFEN-H1,2 and AFEN-H2R solutions with the reference solution is excellent. Table i

contains the eigenvalues of matrix A of this problem when ker = 1.11204.
Table |. Results for 4-group VVER-1000 problem

method o err/((;r;(f%) n<:aex.power er;c\J/Z“’/o) CP(L;egne
reference 1.11192 - - - -
AFEN-H1 1.11204 0.011 0.64 0.27 20.9
AFEN-H2 1.11207 0.014 0.60 027 5.8
AFEN-H2R 1.11182 -0.009 0.62 0.15 58
DIF3D-Nodal 1.10693 ~-0.449 N.A. N.A. N.A.
(VS(?-AF%ZE) 1.11157 -0.031 -2.12 Q.72 191.2

"SUN Sparc/2

Table II. Eigenvalues of matrix A in VWER-1000 problem {(ker =1.11204)

fuetl 1 fuel 2 fuel 3 reflector
0.2546E-3 -0.2674E-2 -0.3258E-2 0.4398E-1
0.1452E+0 + 0.1029E-1/ 0.1470E+0 + 0.3661E-02/ 0.1436E+0 0.1734E+0
0.1452E+0 - 0.1029E~1 § 0.1470E+0 - 0.3661E-02/ 0.1514E+0 0.2166E+0
0.4242E+0 0.5240E+0 0.5518E+0 0.1204E+0

As the second problem, SNR300 is considered. SNR300 is a 4-group problem modeling a small
LMFBR core. Geomeiry of the three-dimensional core is shown in Ref. 9. Two two-dimensional
calculations were performed: rod-in and rod-out case. Numerical results are summarized in Table Wi

From the two-dimensional results, one can see that both AFEN-H1 and AFEN-H2 provide accurate

ke and power distribution. It should be noted that computation time of AFEN-H1 is almost the same

as the FDM calculation with 24 triangles/hexagon. One can note that AFEN-H2R can accurately
analyze both rod-in and rod-out cases of the SNR300 benchmark problem.

Three-dimensional calculations for the SNR300 problem were done with AFEN-H1 2 and were
compared with those of DIF3D-nodal. The results are summarized in Table V. Table V contains
numerical results of AFEN-HIR and AFEN-H2R. Clearly, it can be observed that the negative
eigenmode relaxation in this three-dimensional problem provides much better solutions.

—145-



Table {ll. Two-dimensional SNR300 calculations

method ar ket |node power error(%)|CPU time’
error(%) max. ava. (sec)
VENTURE (1536 A/hex) | 1.12375 - - - -
AFEN-H1 1.12376 | 0.00t -0.82 0.13 59.6°
rod-in AFEN-H2 112474 | 0088 0.55 0.22 145
AFEN-HZR 1.12430 | 0.049 0.75 0.31 145
DIF3D-nodal 112529 | 0.137 N.A. N.A. 1.4°
\(IQEA"\’AT/L;:S 1.12475 | 0.089 -0.42 0.16 475"
VENTURE (1536a/hex) | 1.22413 - - - --
AFEN-H1 122427 | 0.011 -0.84 0.20 54.8°
rod-out AFEN—HZ 1.22504 0.074 -0.60 0.18 15.3°
AFEN-H2R 1.22466 | 0.043 -0.54 0.21 15.3%
DIF3D-nodal 122527 | 0.093 N.A. N.A. 14°
VENTURE (24A/hex) | 1.22461 | 0.039 -0.45 0.12 4.2

2 SUN Sparc/2, ° IBM 370/195, * 1 IBM 370/195 sec = 7.5 SUN Sparc/2 sec

Table IV. Three-dirmensional SNR300 results

DIF3D-fdm AFEN-H1 AFEN-H2 DiF3D-nodal
max.error %) max. error(%) max. error(%) max. error{%)
rou
group 242 /hex, 8 16 8 16 8 18
36 planes planes planes planes planes planes planes
1 ~1.94(0.63) 7 |-2.21(0.60)|-0.69(0.23) | -2.24(0.78) | -0.72(0.40) | -1.04(0.56) | -0.55(0.36)
2 -0.69(0.27) [-1.56(0.50)|-0.63(0.24)|-1.45(0.52) |-0.60(0.31) | +0.94(0.38) | +0.95(0.32)
3 -1.21(0.38) {-1.39(0.57)}-0.66(0.28) |-1.66(0.73) | +1.02(0.47) {+1.90(0.80) | +1.91(0.71)
4 -2.31(0.92) [-2.11(0.84)|-1.29(0.48)|-2.12(0.85)| +1.63(0.54)|-4.43(1.62)| ~3.76(1.38)
Koy (ref=1.00989) | 1.01118 1.01334 | 1.01134 | 1.01376 | 1.01176 | 1.01151 1.01125
Kot error (%) 0.128 0.342 0.144 0.383 0.185 0.160 0.135
CPU time {(min) 6.4 8.9 19.89 254 6.53 0.24 0.64
Computer IBM 370/195 SUN Sparc/2 IBM 370/195

~

1 IBM 370/195 sec

7.5 SUN Sparc/2 sec , 'average error (%)

Table V. Resuits of AFEN-H1R and AFEN-H2R in three-dimensional SNR300

AFEN-HIR error(%) AFEN-H2R error(%)
g 8 planes 16 planes 8 planes 16 planes
max avg max avg max avg max avg
1 -0.47 0.19 -0.34 0.13 -0.50 0.32 -0.44 0.28
2 -0.42 0.18 -0.33 0.16 +0.75 0.26 +0.78 0.30
3 -076 | 027 | -046 | 022 | +1.30 | 054 | +1.30 | 045
4 -128 | 066 | -121 | 022 | +200 | 092 | +1.92 | 061
ke (ref=1.00989) 1.01124 1.01081 1.01121 1.01079
ke error (%) 0.133 0.09 0131 0.089
CPU time (min) 8.91 19.89 254 6.53
Computer SUN Sparc/2
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V. Conclusions

Four types of computer codes based on the new AFEN method were developed to solve the
general multigroup diffusion equations in the hexagonal reactor core. The first is AFEN-H1 which
considers both interface and edge fluxes as nodal unknowns and the second AFEN-H2 where only
interface fluxes are solved. AFEN-H2 is much faster than AFEN-H1 but at the cost of some loss of
accuracy. The other two codes are variants of AFEN-H1 and AFEN-H2, which are named AFEN-H1R
and AFEN-H2R, respectively. AFEN-HIR and AFEN-H2R are based on the eigenmode relaxation,
where the negative eigenmode, it exists, is relaxed by a factor which is empirically determined.

Application to several benchmark problems shows that the new AFEN-H1 can provide accurate
solutions for both two- and three-dimensional problems but requires relatively long computing time. Also,
it is observed that AFEN-H2 runs 2 or 3 three times faster than AFEN-H1, but gives a little less
accurate solution. From the results, it may be concluded that AFEN-H1 is useful for thermal reactor
analysis which requires very fine-mesh FDM calculation and AFEN-H2 can be used for fast reactors
which are analyzed usually with relatively coarse-mesh FDM calculation.

Numerical results also show that the negative eigenmode relaxation in both AFEN-H1 and AFEN—H2
results in improved solutions, especially, improvement is significant in three-dimensional calculation.
Although the eigenmode relaxation is based on numerical experiments and needs stronger theoretical
basis, we think that both AFEN-H1R and AFEN-H2R can be effectively used for multigroup analysis of
nuclear reactors with hexagonal geometry.
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