Proceedings of the Korean Nuclear Society Spring Meeting
Cheju, Korea, May 1996

Development of a Consistently Formulated General Order Nodal Method

for Solving the Three-Dimensional Multi-Group Neutron Kinetic Equations

H. D. Kim

Institute for Advanced Engineering

ABSTRACT

A new general high order consistent nodal method for solving the 3-D
multigroup neutron kinetic equations in (x-y-z) geometry has been derived by
expanding the flux in a multiple polynomial series for the space variables
without the quadratic fit approximations of the transverse leakage and for the
time variable and using a weighted-integral technique. The derived equation set
is consistent mathematically, and therefore, we can expect very accurate
solutions and less computing time since we can use coarse meshes in time
variable as well as in spatial variables and the solution would converge exactly

in fine mesh limit.

I. INTRODUCTION

Various coarse-mesh nodal methods have been developed and implemented for the
numerical solution of the neutron diffusion and transport problems', Numerical
testing of these methods and comparison of their results to those obtained by
the conventional methods have established the high accuracy and computational
efficiency of nodal methods. However, in nodes the transverse currents at their
surfaces not varying smoothly, modern nodal methods using transverse integration
procedure suffer from substantial errors and convergence difficulties’., These
problems arise mainly from the non-self-consistent quadratic fit approxim.altions3
of the transverse leakage. In transient problems, the methods also suffer from
low computational efficiency.

The major disadvantage in using coarse meshes with the lowest order modern
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nodal methods is the reduced resolution: accurate point values of the flux
distribution are somewhat difficult to recover from the converged solution,
especially in highly distorted flux regions. Originally, higher order methods
have been suggested' as a remedy to this problem, and have been implemented”? in
solving the steady state diffusion equation to improve the accuracy of the nodal
solution, of which the numerical evidence showed very good accuracy. For the
time dependence of the equations, the methods still use the conventional finite
difference schemes,

In the present work, a new general high order consistent nodal method
expanding the flux in a multiple polynomial series for the space variables
without the quadratic fit approximations of the transverse leakage and for the
time variable, using a weighted-integral technique, and then determining the
expansion coefficients numerically is derived for solving 3-D multigroup kinetic

equations in (x-y-z) geometry.

11. MATHEMATICAL FORMULATION

In a starting point deriving the nodal method, the time-dependent diffusion
equation is expressed by dimensionless variables and modified with a trick® for
improving computational efficiency in dealing the feedback effects and transient

perturbation as
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All the coefficients on the left hand side in Eq. (1) are node averaged
constants, and the in-node time dependence of the removal cross section has been
transferred into the time-dependent effective source term of the right hand

side,
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Through the integration procedure of spatial variables, we can reduce the
diffusion equation to time-dependent ordinary differential equations. For the u,
v and w moments of the 1-dependent flux, we multiply Eq. (1) by Pnfu), Pn(v) and
Pn{w), the Legendre polynomials in u, v and w variables, respectively, and
integrate over -1 < u, v, w £ 1 in the node to arrive at the time-dependent
generalized spatial moment equation as
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and group index g is omitted for clarity.

The coupling terms, L’s, arise from the intergration of u-, v- and w-channel
derivatives, respectively. Aumnn (1) is the weighted-integral effective source
term involving the fission, scatter and 3-directional transverse leakages. J's
are the net current moments at the right (R) or left (L) surface or the in-node
current moment.

Solving Eq. (3) and expanding the i-dependent terms by Legendre polynomial, we

obtain the equation for the n, n., ny and n; moment fluxes or time edge moment

fluxes,
O nan, = Exp(-20) o'naone + z Fn:: Amunanene, (8)
n.-=0
and
On.nnen: = Gng (IJIn..nvn‘r + 2 Hnmne Aagnenang, (9)
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where Fn., Gn., and Hnn., are the coefficient functions which can be analytically
evaluated. The superscripts I and E denote the initial and end points on a
discretized time interval. The ¢ln..nm., 0, and Ononwne are time edges and
in-node flux moments,

The equation for the v, w and 1 moments of the u-dependent flux is expressed
by similar procedure as

- de—zmg—)— + 3. onnn(u) = Annane(u), (10)

Ax du
where Anann(u) similar to Amnadz) in Eq. (3) is the effective source term
involving the fission, scatter, 2-directional transverse leakages and time-edge
fluxes,

Expanding the effective source term in u-direction, Aununn.(u) by the Legendre
polynomial and solving Eq. (10) with substituting the expansion of Annmn.(u), we
obtain the equation for the u-dependent, nv, ns and n: moment fluxes, Onun.(u).
The same procedure yields the expressions for ¢nan.(v) and Onnwn{w) in v- and
w-channel, respectively.

The solution for the flux moments given by Eq. (8) or (9) depends on the
availability of the net current moments at interfaces of spatial nodes and of
flux moments at edges of time mesh., The spatial coupling parameters which are
defined in terms of net current moments across a surface can be generated from
the continuity condition for the flux moments at interfaces. When this condition
and the equation for flux moments, ¢nna{u), ¢nan(v) and ¢nnn(w) are used at a
given interface, the spatial dependent flux moments are eliminated and an
equation relating the three net current moments at three consecutive interfaces

is obtained. For example, for u-direction,

L L L
E.i Junaencig + Eui Jonaene: + B Junanenc i = Quaenc, (11)

The equation set can be globally expressed as a tri-diagonal system of
equations relating each set of net current moments for the one-dimensional block
under consideration. The coefficients, E.i., E.;, and E.;, are the same for net
current moments of all orders. The one-dimensional block equations for the
current moments are coupled via their right sides, Quanan.:, which are effective
source moments, When the derived equation set is truncated at finite moment

series for a desired order moment, they can be solved by the standard
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iterative-method.

I1T. SUMMARY

A consistently formulated nodal method for solving the diffusion kinetics
problems successfully has been derived by using Legendre polynomial expansion
and a weighted-integral technique. The method is based on the nodal balance
equations written in terms of the net current moments across the surfaces of
node and of the flux moments at edges of time mesh. It uses a mathematically
consistent polynomial expansion for the spatial and time-variables, which
renders the use of an approximation for the transverse leakages no necessary and
makes the use of coarse mesh in the time variable as well as in the spatial
variables possible, therefore, we can expect very accurate solutions and less
computing time, and the solution would converge exactly when the mesh width is
decreased or the approximation orders are increased. The result establishes the
missing link between nodal methods and conventional finite difference methods.
The method also has been written in a way of avoiding the expensive
recalculation and storage requirement of time-dependent coefficients by feedback
effects and perturbation insertions, It would be a computational frame that
could warrant accuracy, efficiency and flexibility in solving the reactor
physics problems. The method will in succeeding work be tested against various

nodal orders in time and space variables for ensuring their effectiveness,
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