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Abstract — A transport theory code CRX-Hex based on characteristic methods
with a general geometric tracking routine is developed for the heterogeneocus
hexagonal geometry. With the general geomtric tracking routine, the
formulation of the characteristic method is not changed. To test the code, it
was applied to two benchmark problems which consist of complex meshes and
compared with other codes (HELIOS, TWOHEX).

1. Introduction

Recently, the method of characteristics™?¥ first proposed by Askew that
combines desirable features of the integral transport and Sy method has been
considered as an effective method for the cell and assembly calculations. But
the method of the characteristics has not yet been applied to hexagonal
geometry. In this paper, the method of characteristics is applied to hexagonal
geometry. In this method, the outgoing flux is calculated by integrating the
differential form of the Boltzmann equation along its characteristic lines with
the incoming flux and the source for each discretized direction. Therefore, the
method of characteristics has no limitation on geometry. In this aspect, this
method resembles the Monte Carlo method and integral transport method. In
the geometric tracking routine in CRX-Hex of this paper, the constraints in
existing characteristic transport codes are almost relaxed. In most characteristic
transport codes, the ray tracing is complicated due to enforcing the return of
the rays on the exactly same point on reflective boundaries. But, in CRX-Hex,
the reflective boundary is divided into several edges and the angular fluxes on
each edge of the reflective boundary are assumed to be same. In treating the
hexagonal external boundary, the formulation of the characteristic method is
not changed, but the routine for the determination of starting positions of rays
and the routine for the returning of rays on the reflective boundaries must be
changed.
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II. Theory and Methodology

In this section, the formulation of the characteristic method will be briefly
reviewed. The derivation of the characteristic method starts with the
differential form of the multigroup transport equations. The within group (g)
equation for the discretized direction (n,m) is given as follows :
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where p is the projected coordinate on x— ¥ plane of the coordinate along the

neutron trajectory for the direction (m,n) and @ is the polar angle. In the

above equation, » and 7z represent the azimuthal angle index and the polar
angle index, respectively. The equation for computational mesh (7,7 with flat
source approximation is simply obtained by intergating Eq.(1) :
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where [ is the ray index and 7%, ,; is the optical length.

The average angular flux for the direction (m,n) along the /’'th ray is
obtained by integrating Eq.(1). The equation is given as follows :
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However, to perform the scattering source iteration, the average angular flux
over the computational mesh is required for the generation of the source. The
equation for the average flux over the computational mesh is obtained by
summing the average fluxes (Eq.(3)) over rays that pass through the mesh.
The equation is given by the following expression :
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where A;; represents the area of the (i,j) mesh and 4, represents the

spacing between adjacent rays for the m'th azimuthal direction.

In treating the hexagonal geomtry by using the method of characteristics,
the above formulation is not changed. But new routines for determination of
the starting positions (see Fig. 1) and the returning of rays on the reflective
boundaries are required. Also, the azimuthal angular quadrature set must
satisfy the 1/6 symmetry. At present, in CRX-Hex, each azimuthal angular



sector is uniformly divided into discrete angles and uniform azimuthal angular
weigt is used.

III. Applications and Results

For verification of the code, two benchmark problems were tested. The first
is a heterogeneous hexagonal multicell problem that consists of five fuel cells
and one control rod cell. The configuration is given in Fig. 2. For comparision
with the HELIOS code' thirty-four group macroscopic cross sections were
directly extracted from the cross section library of the HELIOS code and the
same mesh divisions were used. The HELIOS code is an integral transport
code that uses interface current coupling method with angular dependent
collision probability. It is also noteworthy that the HELIOS code uses transport
corrected macroscopic cross section for consideration of linearly anisotropic
scattering. This treatment may in some cases lead to a negative value of the
selfscattering cross section. The infinite multiplication factors are given in
Table I. The control rod is replaced by a fuel rod in the second case. The
second (see Fig. 3) is a homogeneous one group problem that consists of three
types of homogeneous cells (water, fuel, control rod). This benchmark problem
was selected for comparison with the well known TWOHEX code® that uses
linear characteristic method. The cross sections are given in Table II and the
power relative error(%) distribution is given in Fig. 4.  The result of the
TWOHEX code (twenty—four triangles per hexagonal cell, Si2) is used as
reference solution. The results of CRX-Hex are obtained with six triangles per
hexagonal cell and twenty-four triangles per hexagonal cell. In Fig. 3, it is
noted that fine meshes are required in CRX-Hex to obtain an accurate solution
comparable to the reference soution (TWOHEX solution). But this requirement
in CRX-Hex can be compensated by its capability of the heterogeneous
calculation.

IV. Conclusions

In this paper, a characteristic transport theory code CRX-Hex with a
general geometric tracking routine for hexagonal geometry was described and
tested. The code was developed to accurately analyze the heterogeneous
hexagonal assembly with complicated mesh shapes. In CRX-Hex, for treatment
of the reflective boundary condition, we assumed that the angular fluxes for all
rays on each edge are the same with the edge average value. With this
treatment of the reflective boundary, the constraints of the existing
characteristic transport codes are almost relaxed in CRX. To test its accuracy,
the code was applied to two benchmark problems. The infinite multiplication
factors were compared with the HELIOS code for a heterogeneous problem
(with slightly different cross sections). The numerical results (power
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distribution, multiplication factor) were also compared with the TWOHEX code
for a homogeneous problem. From the numerical results, it is concluded that

CRX-Hex with fine meshes gives accurate solution in comparison with
TWOHEX.
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Fig. 1. Ray tracing in the CRX-Hex code
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outer radius : 0.65¢m
inner radius : 0.60cm
pitch : 1.60cm
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temperature : 550K

Fig. 2. Configuration for the benchmark problem I
Table I. Infinite multiplication factors for the benchmark problem I

HELIOS CRX-Hex"
case [ 0.679104 0.678090

case II 1.097121 1.107400

“number of polar angles: 2
number of azimuthal angles for one sector : 2
number of rays : 220

Vacuum
Vv/w \w/w\w/w\vy
f f

f

‘ f f
reﬂectiv o reflective
f : fuel

w: water gap
¢ : control rod
side of hexagon : 0.4cm

Fig. 3. Configuration for the benchmark problem II
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Table II. Cross sections ( em™!) for the benchmark problem II

material fuel water | control rod
0, 0.93480 1.32956 1.24980

o, | 083220 | 102093 | 0.46580
vo, | 017970 | 000000 | 0.00000

symmetry lines

reference

CRX-Hex 2
CRX-Hexb

Kesf
reference : 0.7124
CRX-Hex 2:0.6918
CRX-Hexb: 0.7100 J

CRX-Hex 2 : six triangles/hexagon
CRX-Hex b : twenty four triangles/hexagon

Fig. 4. Relative power error distribution for the benchmark problem II
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