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ABSTRACT

A wave equation and a comprehensive linear combustion model are
developed for ramjet and afterburner combustion instability predictions.
Modal analysis is used to develop general results for frequencies and
damping factors and examples of their applications are given.

1. Introduction

In the development of ramjet and afterburner combustion systems, one of the major concerns
is the creation of large amplitude pressure oscillations by unsteady combustion. These self-
excited oscillations (referred to as combustion instabilities) are driven by a coupling between the
unsteady heat release and an acoustic oscillation at one of the resonant modes of the system.
Such oscillations, accompanied by excessive vibrations and heat transfer to the combustor walls,
can cause system failure in extreme cases.

Low frequency oscillations in the range of 50-500 Hz and generally characterized by
longitudinal modes at the resonant frequencies of the combustor seem to be the most important
in ramjet and afterburner combustion chambers. Several investigators such as Culick (1988),
Langhorne (1988), Bloxsidge, Dowling, and Langhorne (1988), and Shyy and Udaykumar (1990)
have suggested that these instabilities are primarily velocity sensitive. Velocity sensitive
combustion instability is, therefore, the subject of this paper.

2. Governing Equations

Consider a combustion chamber in the form of a duct of length L having an inlet at the left
end. The combustion chamber contains a flowing mixture of fuel, oxidizer, and products of
combustion which will be treated herein as an inviscid nonconducting ideal gas with gas constant

R and ratio of specific heats y. Treating the flow as one-dimensional, the respective

conservation equations for mass, linear momentum, and total energy are
—a—p- + p—aE + u.a_p =0
ot ox ox
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where x is axial position, t istime, p isdensity, u is axial velocity, p is pressure, D is axial
body force per unit volume, e is specific internal energy, and Q is the heat addition rate per unit
volume. The equations of state are

RT

= pRT, € - —
p=r 1 2)
It is convenient to introduce dimensionless quantities by the following transformations
L — N a(b
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where the symbol .. indicates a transition from dimensional quantities (tail) to corresponding
dimensionless quantities (tip), a bar indicates a steady state quantity (function of x only), a prime
indicates differentiation of a function of one variable with respect to its argument, p, is the
initial density, c, is the initial sound speed, u, is the dimensionless inlet velocity, ¢ denotes
velocity potential, and A denotes force potential. The dimensionless dependent variables are
treated as small perturbations from a reference state characterized by unit pressure, temperature,
density, and constant velocity u,. Terms that are linear in the perturbations will be called first
order terms, those quadratic in the perturbations second order terms, etc. It is desired to obtain
a system of equations structured such that the first order terms will be those associated with the
equations of linear acoustics and all additional effects (body force, heat addition, mean flow,
nonlinearity) will appear as second order corrections. (This approach is similar to that of Culick
(1988) and is motivated by observations that the disturbances associated with combustion
instabilities usually closely resemble the acoustic modes of the chamber.) Toward this end u,
will be treated as a first order term while the sources will be treated as second order terms.
Substituting (3) into (1) and (2), retaining only first and second order terms, and carrying out a
number of manipulations (omitted for the sake of brevity) yields

PG =
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for the steady state solution (assuming A-0 ) and
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for the stability problem. In (4) and (5) & and n are dummy variables. Since Q is a second
order term according to the original assumptions, u is predicted to be a second order term (rather
than first order as originally assumed) while p and T are predicted to be first order terms.

In the present work the heat addition term Q will be used to account for the burning process
and the body force term A will be used to approximately represent the ability of devices such
as baffles and liners to modify the frequency and damping characteristics of the system. These
latter effects cannot be handled exactly in a one-dimensional formulation.

3. Linear Combustion Model

Several investigators such as Culick (1988), Langhorne (1988), Bloxsidge, Dowling, and
Langhorne (1988), and Shyy and Udaykumar (1990) have suggested that the main features of the
unsteady heat addition occurring in ramjets and afterburners can be modeled by treating the
unsteady combustion as a linear velocity sensitive process. In this section, a general linear
velocity sensitive combustion model will be developed which includes and generalizes the work
of the above-mentioned authors.

The unsteady heating rate Q will be assumed to be proportional to the steady heating rate,
ie.,

Q1) = Q) qx,b (6)
where q(X,t) characterizes the unsteady heating response. Two different methods of modeling q
are considered. These will be called the local model and the convection model. Each is
discussed below.

The first model to be discussed will be called the local model herein. It assumes that the
unsteady heating response at any point is a function of the unsteady velocity at that point and is
characterized by the general equation

2@ - YO L,w) 7

where &, and &, are linear temporal operators and Y is an amplification factor which measures
the influence of velocity perturbations on heating rate perturbations at any time.

Equation (7) is quite general and allows for a variety of responses. It is a time domain
relation. An equivalent frequency domain relation can be obtained for the important special case
in which Y is treated as a constant. This is done by substituting the harmonic functions

qx.t) = 4(x)e’, uxt) = a(x)e" (8)
into (7) to obtain
- YIu; 1) - L) i) )

where the complex number I(w) is an impedance function, the form of which depends on the
forms of ¢, and ¢, . In many situations information about I(w) is supplied directly without
aknowledge of &, and &£, .

The second model to be discussed will be called the convection model herein. It makes use
of the equations

0 0
a‘tl . vc(x,t)éi)‘Z -0, qx,t - q,0 (10)

where v_ is a convection velocity, X, is the location of a heat source, and q (t) characterizes
the unsteady heating response at the source. According to this model, heating response
perturbations originate at x_ and travel downstream with velocity v_. The local flow velocity,
the speed of sound, and the velocity of moving vortices have all been suggested as appropriate
convection velocities. The problem defined by (10) has the general solution
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(1) = q(O)H(x-x) (11)

with the relationship between 0, x, and t determined from solving the problem
dt
dx

In the present work it will be assumed, for simplicity, that v_ is constant. Then (11) reduces to

1
v tx) - 0 (12)

a0 - q,0-—H(xx) (13)

c

In a manner similar to (7), the relation between q(t) and u (t)=u(x,t) will be assumed to
have the time domain form

5’El(qs) =Y (t) gez(us) (1 4)
To obtain the equivalent frequency domain relationship for constant Y , one substitutes
qs (t) _ qs e iwt, us (t) - ﬁs e iwt (1 5)
into (14) which yields
('15 = YI(&))ﬁs (16)

Substituting (8) and (15) into (13) and using (16) yields

ﬁim(ﬁ)

q-YIwie ™ (17
Equation (17) has the same form as (9) with the addition of an exponential space shift factor. It
can be shown that the convection model proposed herein includes the combustion response
models employed by Culick (1988), Shyy and Udaykumar (1990), and Bloxsidge, Dowling, and
Langhorne (1988). Furthermore, it provides a framework for the generalization of these models.
Within this framework many possible forms of combustion response can be investigated.

4. Linear Stability Analysis

In this section a general linear stability analysis will be developed based on (5 a). The method
of modal analysis will be used to accomplish this. Neglecting nonlinear terms in (5 a) and
assuming

A--né-k(d (18)
(m and k being constants) yields

b b ¢ od
— - == + 2u +— + ko + -1 =0
o aa Var ¢ - (v-HQ (19)
In (19) the terms multiplied by k and m play the roles of respective generic frequency change
and damping effects not associated with either combustion or mean flow. They will subsequently
be referred to as body force effects.

Let
¢ - LoV, (20)
m=1
where the {'s are a complete set of orthonormal functions in the region 0 < x < 1 satisfying
Qg -0 1)
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and the f's are the corresponding modal amplitudes. In (21) the Q's are the natural frequencies
of the associated acoustics problem (all terms except the first two neglected in (19)). Substituting
(6) and (20) into (19), multiplying each term by ¥ _(x), integrating from x-=0 to x=1, noting that

1
[¥. 00w, 0dx - 8, (22)
(orthonormality condition), and makinog the definitions
1 1
Can = [UnO¥,(0dx, Q- [REGED Y, K)dx 23)
yields 0 0
£ . 2uoilcm £ .0 f .0k ki« @-DQ -0 24)

where a dot indicates time differentiation. Equation (23 b) must be evaluated separately for each
of the two combustion models.
First, consider the local model which is characterized by the general equation

9@ - Y0 - Yd) (25)
Substituting (20) and
Q- e OV, 26)
into (25) yields
€,(8,) - Y,(F) (27)
Substituting (26) into (23 b) gives
Q- 1D,.g0 28)
where
1
D,, = [QE0) W) ¥,(0dx (29)
Second, consider the convection modelo which is characterized by the general equation
2,(9) - Y,0) - Y2[ED) (30)
Substituting (20) and
a, - L e O¥6) 61
into (30) yields (27). Substituting (31) into (13) and substituting the result into (23 b) yields
Q, - § V(X)) ] Q(x) g, (t- X;X‘) ¥, (x) dx (32)

c

Equation (24) was derived using an order of magnitude analysis which assumed that mean
flow, combustion, and body forces produced small corrections to the associated acoustic
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response. This idea will also be used in the stability analysis to be presented next. The following
discussion has much in common with the ideas of Culick (1988).

A first use of the small correction idea is to uncouple the modal amplitudes by assuming that
the summations appearing in (24), (28), and (32) are dominated by the terms for which m-n.
This reduces (24) to

f +nf - (Q-Kf + 2uC _f « (y-1DQ, - 0 (33)
Equations (27) and (33) form a determinate set of equations to solve for f and g .
Substituting the harmonic functions
f - Fe™, g, - g e (34)

into (27) (assuming constant Y ) and substituting the result and (34 b) into the truncated forms
of (28) and (32) yields

Q, - fe™'YI(w)D_ (35)
where
D, - } Q(x) W,(x) ¥, (x)dx (36)
0
for the local model and
D, = ¥ (x) ] é(x)e_w“(—”f)w,,(X)dx (37)

for the convection model. Substituting (34) and (35) into (33) yields the common form
®l - k - i(n-2u,C e, - (y-DYD_I(w) - Q2 (38)

nn

This algebraic equation must be solved to find the complex frequency .
A second use of the small correction idea is to solve (38) approximately as follows. It can be
rewritten as
(0,-2)(0.+Q) - k + i(n+2y,C Yo+ (y-)YD,_I(w) (39)

0 Ton
A first approximation can then be obtained by neglecting the entire right hand side of (39) to
yield
w = (40)
A second approximation can then be found by replacing w_ in (39) by (40) everywhere except

in the factor on the left hand side which would be reduced to zero by doing so. The result of
doing this can be stated in a convenient form by first letting

® =x§ +1( 41)
and noting that
eimnt - eiisnt e-cnt (42)

allows one to identify s, as the frequency and ( L as the damping factor of the n'th mode. Then
the second approximation can be written
Sa = Stn * Son * S50 Ca = Cl,n * CZ,n * C3,n (43)

n ILn

where
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(-DY
2720 T Y [Dp o (2)-Dy, L Q)] (44

are the respective acoustic, body force, and combustion contributions to the frequency and

CartCon s G g s Gur ST L@)IDL L@ (45)

are the respective mean flow, body force, and combustion contributions to the damping factor.

The solution methodology employed herein automatically produces frequency and damping

factor expressions which are sums of contributions due to individual effects. If a new physical

effect is added, therefore, it is only necessary to determine its associated frequency and damping

factor contributions and add them to those already existing. The entire solution need not be

repeated.

It was possible to obtain (44) and (45) without specifying either the orthonormal functions

Y, (%) or the combustion impedance function I(w ). These results are, therefore, quite general
and can be used under a variety of circumstances.

5. Applications

In this section, several examples of the application of the results of the previous section will
be given. In these examples a simple time delay combustion model will be used. This is
produced by allowing the operator ¢, to take on the value unity and the operator &, to produce
atime delay 1. This yields the time domain form

q - Yu(t-1) (46)

and the corresponding impedances

I;(0) = cos(wT) , I(w) = -sin(wT) (47)

Here 1 is interpreted as a characteristic time associated with the combustion process.
Concentrated steady heating rate and rectangular steady heating rate distributions will be
investigated. Both the local and convection models are employed. Three combinations of
boundary conditions (designated as open/open - O, closed/closed - C, and closed/open - M) are
considered.

The concentrated steady heating rate distribution is expressed as

Q) - QAK-1) (48)
where Q and A are constants. Here the heating zone is idealized as a single cross section x = A.

The respective acoustic frequencies and corresponding orthonormal eigenfunctions for various
boundary conditions are shown in Table 1.

Table 1. Orthonormal eigenfunctions, circular frequencies for various boundary conditions.

open/open (O) closed/closed (C) closed/open (M)
v, v/2 sin(nmx) v/2 cos(nmx) V2 cos [—(—%r—l—;)—nx]
2n-1
Q. nm nm en-Dr n2 i

For the local model the combination of (36), (45¢c) and (48) results in
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¢, - = L1QY,sin@e,1sin(@,7) 00, C,M() (49)

Equation (49) holds for all modes. The idealized nature of the steady heat release distribution
(concentrated at one cross section) makes this expression relatively simple to interpret.

In most cases the behavior of the first mode is the most important in instability studies. For
open/open or closed/closed conditions and a given mode number n = 1, (49) changes signs at
A=1/2 and 1 =1 provided the restriction of 0 <t <2. For open/open conditions, therefore,
unsteady heating produces a tendency toward instability of the first mode for A <1/2 and 1t <1
or A>1/2 and T>1 and a tendency toward stability of the first mode otherwise. For
closed/closed conditions, on the other hand, instability of the first mode is predicted for A > 1/2
and T <1 or A <1/2 and t > 1 and stability of the first mode is predicted otherwise.

For closed/open conditions it can be seen from (49) that the restriction 0 <t <4 can be
imposed without loss of generality. Thus, {, is positive for all possible A's and t <2 and
negative for all possible A'sand ©>2.

In all subsequent discussion, unless explicitly stated to the contrary, the behavior of ¢, (the
first mode combustion damping factor) will be singled out for detailed discussion because of its
importance in applications. It should be recalled, however, that the general damping factor
expressions for _ are correct for all modes.

Expression (49) is useful in explaining the behaviors of both the Rijke tube and jet engine
augmentors. These issues will be discussed below.

First, consider the Rijke tube (see, for instance, Carrier (1955) or Culick (1970) and the
references therein). In the Rijke tube a heater is located at an interior cross section of an
open/open tube and subjected to mean flow. Under certain circumstances instability can occur.
With the heater replaced by a combustion zone, this closely resembles the situation in certain
types of ramjet combustion chambers. As mentioned previously, (49) shows that ¢, <0 is
satisfied if A <1/2, provided that T <1 ( according to Carrier (1955) t = 3/8 for the Rijke
tube). Therefore, the placement of the heating plane in the upstream half of the duct is predicted
to result in excitation of the fundamental acoustic mode of the duct as is observed
experimentally.

Next consider a highly simplified model of a turbofan augmentor. The augmentor is bounded
on the upstream side by the turbine outlet and on the downstream side by a choked nozzle. Both
of these boundaries are nearly acoustically closed. It is believed that the quality of fuel
atomization and fuel droplet vaporization may be critical to stability. As the quality of these
processes deteriorates, the combustion zone will move downstream in the augmentor. Assuming
that the behavior is adequately described by the closed/closed boundary condition of (49),
deterioration of atomization and vaporization could be roughly simulated by increasing A. As
mentioned previously, values of A > 1/2 produce instability (provided that T <1). This trend
appears consistent with experimental observations.

For the convection interaction model the combination of (37), (45¢) and (48) results in

(- DAY, cos(Qx)sin(@ )[Rt~ 5] 5 O
u

Ca =) (50)

(v-1DQY, sin(Q x ) cos(Q,A)sin[Q (t+ —2)] ; C,M
u

[4

It can be seen that (50) can be reduced to (49) by making the substitution x, = A. Here the
source cross section and the heating cross section have the same location which erases the
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distinction between the local and the convection interaction models. It can also be seen that the
symmetry between the results for open/open and closed/closed ducts exhibited by the local
interaction model is lost when the convection interaction model is employed.

The quantity (A-x,)/u, is the time required to travel the distance A -x_ separating the
heating cross section from the source cross section at the convection velocity u,. It can be seen
that this quantity enters (50) as an additional effective phase shift. Since the parameters
X, A, T,and u_ all appear in (50), it is helpful to put reasonable restrictions on as many of these
parameters as possible as an aid to interpretation.

First, as mentioned in Section 3, the local flow velocity, the speed of sound, and the velocity
of moving vortices have all been suggested as appropriate convection velocities. The local flow
velocity is subsonic in ramjet and afterburner combustion chambers. The speed of moving
vortices 1s likely to be of the order of the local flow velocity and, therefore, also subsonic. The
dimensionless convection velocity is normalized with the undisturbed speed of sound and is the
convection Mach number. Based on the considerations just discussed, it is reasonable to impose
the restriction 0 <u, < 1. Second, it will be assumed that 0 < t < 1. This is consistent with
Carrier's (1955) estimate of T « 3/8. Third, it should be recalled that the geometry of the system
imposes certain constraints. Thus, 0 < x, < A < 1 (= A-x, < 1).

Inspection of (50) shows that reducing the convection velocity u_with the other variables held
fixed amplifies the influence of the values of A and x . This indicates that relatively small
changes in the operating conditions or geometry can have a large effect on stability. This is
consistent with combustor observations.

Various phenomena can move the position of the combustion plane in an augmentor. This
effect can be simulated in the present model by varying A with other variables fixed. In the
following discussion it will initially be assumed that x < 1/2.

Equation (50) shows that for the open/open configuration {, will be negative for sufficiently
small values of A and may become positive as A increases. This is qualitatively similar to the
behavior exhibited by (49). According to (49) there is only one sign change which occurs at
A=1/2. According to (50), on the other hand, the first sign change will occur at
A, = X + (1-t)u, provided that A, <1. If A, > 1, there will be no stable operation. A total
of M sign changes in {, will occur at the values A_ =x +(m-t)u_;m = 1, 2, -, M with M
being the lowest integer for which A, ; > 1. It can be seen that low values of u_ will correspond
to many sign changes in consistency with the previous discussion of the influence of u,. Allthe
signs discussed above will be reversed for x > 1/2.

Inspection of (50) reveals that for the closed/closed case sufficiently small values of A
correspond to stable behavior of the first mode ({, > 0) and that increasing A will lead to
unstable behavior. This is qualitatively consistent with (49). The first sign change will occur at
the smaller of A = 1/2 and A, =x_+(1-7)u,. If A, > 1 there will be one sign change in (, at
A=A, If A, <1 there willbe 1+ M signchangesat A = A,, A_ with A_ and M be defined as
in the previous paragraph. The signs discussed in this paragraph will not be affected by the value
of x_.

Tshe expression for {, given by (50) for the closed/open geometry will be positive for
sufficiently small A. This is qualitatively consistent with (49) which indicates stability for all
A. A change to unstable behavior will occur at A = A, (provided A, <1). Additional sign
changes will occur at A = A, , A4, - as long as these A's are less than unity. Reducing u, will
increase the number of A's satisfying this criterion. The value of x_ will not affect the signs
discussed above.

The possibility of a large number of sign changes in {, with increasing A is one feature
which clearly distinguishes the convection interaction model from the local interaction model.
This property can be used in an analysis of experimental results to help decide which model best
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describes them.

Varying x; with A -x_  and u_ held fixed in the present model provides a simplistic
simulation of changing the flameholder position in an augmentor. It should be recalled that
increasing x, automatically increases A in this case. The effective time delay
T,= T +{(A-X,)/u_ is not changed by this type of parametric change.

Equation (50) indicates a transition from unstable to stable behavior of the first mode at
X, = 1/2 for the open/open case. Since moving the source downstream automatically moves the
heating plane downstream, it can be said that this behavior is qualitatively similar to that
predicted by the local model (see (49)).

For the closed/closed case (50) shows that {, exhibits a change from positive to negative at
A =1/2. For a situation in which A is initially less than 1/2, increasing x_ increases A and
eventually produces unstable behavior. This is qualitatively similar to the behavior predicted for
the local interaction model by (49). If A is initially greater than 1/2, unstable behavior will
exist for all flameholder positions.

For the closed/open configuration (50) indicates stable behavior for all source (and, thus, all
heating) cross section locations. This is qualitatively similar to the prediction of (49) for the local
model.

It can be seen from the previous discussion that there is considerable qualitative similarity
between the predictions of the local and convection models.

The rectangular steady heating rate distribution is expressed as
Qx) = Q[H(x- 1)) - H(x-4,)] (5D

where Q,, A,,and A, are constants. Here the heating zone is the region A, <x <A, and the
steady heating rate is assumed to be uniform therein.

For the local model, the combination of (36), (45¢) and (51) produces

=+ ;;}1 Q, Y, sin[Q (A,-A)]sin[Q (A,+A)]sin(Q 1) ; O(-), C,M(+) (52)

For open/open conditions, (52) indicates that the first mode will be unstable for A, + A, <1 (
or (A, +A,)/2 < 1/2). The quantity (A, + A,)/2 is the location of the center of the heating
zone. This condition requires that the center of the heating zone be in the upstream half of the
duct (thus generalizing Rijke's result). For closed/closed conditions, the first mode will be
unstable for A, + A, > 1. This condition requires that the center of the heating zone be in the
downstream half of the duct. For closed/open conditions, (, is positive for all possible locations
of the center of the heating zone. These results are qualitatively similar to those for the
concentrated heating distribution. It can be seen that the magnitudes of the damping factors
decrease with mode number for the rectangular heating distribution while this is not observed for
the concentrated heating distribution.

It is interesting to note that the solutions for open/open and closed/closed conditions are
identical except the sign, which is also observed in the local model of concentrated heating. In
fact, (48) is a special case of (51) which is readily demonstrated by substituting

A

__9Q
Q, Y (53)
into (51) and taking the limitas A, - A, = A to get (48). Itis clear that the value of T will affect
the sign of (.
For the convection model it is necessary to state the results of combining (37) and (45¢) with
(51) in two separate forms. For u_ # 1 itis found that
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(y-Du,
———Q, Y, cos(Q x )
Q (1-u)(1+u)
L, Apd, X . lu, A,-A
* 4 (I-u)cos| Q[ 7+( - =) 1| sin(Q, )
u 2 . . 2
l-u AA, X l-u, A-A,
- (l+u)cos| Q [ 1+( S —) 1] sin(Q — > )¢5 O
u
) c c c 54
) (y-Du . 4
—————Q, Y,_sin(Q x)-
Q (1-u)(1+u) " v
. 1+uc )\.2+A.1 Xs . 1 uc A.z A’l
*{ (1-u)sin| Q [ t+( -—) 1] sin(Q_ )
u 2 . . 2
. l-u, AA, x . -u, A,-A
+ (Lu)sin] Q [ t+(—= - =) 1} sin(Q, —= )i CM
u 2 u u 2

Inspection of (54) shows an indeterminacy at u_= 1. Thus a separate expression is needed for
u_ =1 which is

YT'IQancos(ans)-

{é—sm[ﬂ (A, -ADlcos[Q (T+A,+A-X)] - (kz—kl)cos[Qn(‘r-xs)]} ; O

n

g, - 3 (59)
yl
> Q, Y, sin(Q x)-

. {Qisin[Qn(kz-)Ll)]sin[Qn('c+).2+ll-xs)] * ()Lz—)ul)sin[Qn(t—xs)]} ; C,M

n

Equations (54) and (55) appear too complicated to be interpreted by inspection. Therefore,
a few representative sets of numerical results will be presented to illustrate important trends. In
the following discussion the open/open case is selected as representative and attention is limited
to the first mode. On each figure, a corresponding case of concentrated heating is shown for
comparison. The correspondence is established by equating the center of the rectangular heating
distribution, (A, + A,)/2, to the position of the concentrated heating cross section, A. Equation
(53) is used to insure the same steady heating rate in both cases.

Figure 1 illustrates the influence of the convection velocity u, on the damping factor ¢, for
open/open conditions and response model 1. It can be seen that reductions in the convection
velocity lead to more and more rapid oscillations in the sign of {,. This is true for both
concentrated and rectangular heating distributions. It is interesting to note, however, that while
the magnitude of {, approaches zero as u_ approaches zero for the rectangular cases, it remains
finite for the concentrated case.

It should be kept in mind when viewing Figure 1 and similar subsequent figures that ¢, is
directly proportional to the quantities Y, Q, (or Q) and y - 1. Thus results obtained for
representative values of these quantities can be readlly extended to other parametric combinations
by simple multiplication.

Figure 2 demonstrates the influence of varying the center of the heating zone A = (A, + A,)/2
on the damping factor {,. For the concentrated heating distribution it can be seen, as discussed
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earlier, that moving the heating cross section sufficiently far downstream produces stability. The
same trend is observed for rectangular heating distributions with one important difference. The
system geometry requires that the inequality

A, - A A, - A
2 l<crcl - 2 (56)
2 2

must be satisfied. Thus increases in the width of the heating zone decrease the range of
physically possible center positions. This is reflected in Figure 2. For the largest widths it is not
possible to move the center of the heating zone sufficiently far downstream to produce stability.
This is a qualitative difference between the concentrated and rectangular heating distributions.

When the quality of the fuel atomization and/or droplet vaporization processes in a combustor
decreases, the heating zone moves downstream. Then, it is possible that part of the potential
heating zone is pushed out the end of the chamber and some fuel escapes unburned into the
nozzle. Figure 3 illustrates the influence of varying the center of the heating zone
A = (A, + A,)/2 until the left end of the heating zone A, meets the right end of the duct. As
mentioned earlier, moving the heating zone sufficiently far downstream produces a tendency
toward stability. This is augmented in the present case by the fact that less than 100 percent of
the potential heating zone is realized for A >0.7.

Figure 4 illustrates the influence of changing the source position x_ with A - x_ held fixed.
It can be seen that there is a sign change of ¢, from negative to positive at x, = 1/2. Here the
system geometry requires the satisfaction of the inequalities

A
OSXSSI‘(A“XS+ 22 1)’ OSA'z_A'IS2(A‘—XS) (57)

As discussed earlier in a different context, for the large heating zone lengths it is not possible to
achieve stability in this configuration.

In general, the behaviors associated with concentrated heating distribution and the rectangular
heating distribution are qualitatively similar. There are, however, some important differences
as discussed above.

6. Conclusion

In this paper a general formulation of the problem of longitudinal combustion instability in
ramjets and afterburners was given. A single wave equation governing a velocity potential was
derived which can be used for both linear and nonlinear combustion instability predictions. A
comprehensive linear velocity sensitive combustion model was developed which included several
previous models as special cases. A modal analysis was carried out for linear problems. Based
on this, a general linear stability analysis was performed. Finally, several examples of the
application of this stability analysis were discussed.
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